Repositório para o #alurachallengedatascience1

Overview

1° Challenge de Dados - Alura

Badge em Desenvolvimento

A Alura Voz é uma empresa de telecomunicação que nos contratou para atuar como cientistas de dados na equipe de vendas. Logo na primeira semana, a liderança nos informa que é muito necessário realizar um estudo quanto ao Churn da empresa. É explicado que o churn indica se um cliente cancelou ou não o contrato com a empresa, e também que, nos casos de perda do cliente a empresa também perde faturamento, o que ocasiona prejuizos na receita final.

Desse modo, nossa liderança informa que temos 4 semanas para buscar uma alternativa que possa minimizar a saída de clientes e nos entrega um conjunto de dados da Alura Voz que contém diversas informações sobre os clientes e também informa se eles deixaram ou não a empresa.

Sabemos que, antes de pensar em qualquer alternaiva, é preciso entender as informações que recebemos e, após uma pequena reunião, concluímos que na primeira semana nós nos dedicaríamos a entender o banco de dados, descobrir os tipos de dados, verificar a existencia de valores incoerentos e corrigi-los caso seja necessário.

Semana 1 - Limpeza dos dados

Dados

Ao observar a Base de dados da Alura Voz, verificamos que essa é uma base disponibilizada via API em formato JSON com várias camandas de dados.

Junnto a esses dados também foi disponibilizado o dicionário dos dados que nele contém todas as informações sobre as colunas do banco de dados.

Nela, além da informação se o cliente deixou ou não a empresa, também contém:

Cliente:

  • gender: gênero (masculino e feminino)
  • SeniorCitizen: informação sobre um cliente ter ou não idade igual ou maior que 65 anos
  • Partner: se o cliente possui ou não um parceiro ou parceira
  • Dependents: se o cliente possui ou não dependentes

Serviço de telefonia

  • tenure: meses de contrato do cliente
  • PhoneService: assinatura de serviço telefônico
  • MultipleLines: assisnatura de mais de uma linha de telefone

Serviço de internet

  • InternetService: assinatura de um provedor internet
  • OnlineSecurity: assinatura adicional de segurança online
  • OnlineBackup: assinatura adicional de backup online
  • DeviceProtection: assinatura adicional de proteção no dispositivo
  • TechSupport: assinatura adicional de suporte técnico, menos tempo de espera
  • StreamingTV: assinatura de TV a cabo
  • StreamingMovies: assinatura de streaming de filmes

Contrato

  • Contract: tipo de contrato
  • PaperlessBilling: se o cliente prefere receber online a fatura
  • PaymentMethod: forma de pagamento
  • Charges.Monthly: total de todos os serviços do cliente por mês
  • Charges.Total: total gasto pelo cliente

Tendo essas informações entendemos nossos dados e, assim, podemos realizar uma análise mais técnica, buscando entender JSON, os dados e realizar o tratamento deles.

Todo o desenvolvimento feito na nossa 1° semana pode ser observado no notebook semana 1.

#alura #alurachallengedatascience1

Conheça a equipe

Sthefanie Monica

Bacharela em Engenharia Elétrica pela UTFPR e atualmente instrutora de Data Science na Alura. Durante o período de graduação realizei diversas pesquisas voltadas à redes neurais e visão computacional, inclusive um período de pesquisa no Hospital Israelita Albert Einstein. No meu tempo livre adoro jogar, seja boardgames ou jogos eletrônicos, e amo conhecer novos lugares e pessoas, então estou sempre planejando a próxima viagem.

Ana Clara

Sou bacharela em Informática Biomédica e atualmente mestranda em Bioengenharia, ambas pela USP. Atuo como pesquisadora FAPESP e instrutora na Escola de Dados da Alura. Já realizei estágio no Hospital das Clínicas-FMRP, sou cofundadora e atual conselheira do grupo Data Girls. Possuo grande interesse na área de Ciência de Dados e Inteligência Artificial com aplicações em diferentes áreas de negócio. Além disso sou apaixonada por livros, séries, games e um bom café.

Bruno Raphaell

Estudante de engenharia elétrica na Universidade Federal do Piauí (UFPI) e atualmente scuba de Data Science na Alura. Apaixonado por música, filmes biográficos e programação. No tempo livre tento sair do prata no LoL, tocar algum instrumento e assistir filmes e séries.

João Miranda

Bacharel em Matemática pela UFMG e cursando MBA em Data Science e Analytics na USP/Esalq. Atualmente sou monitor na Escola de Dados do grupo Alura. Gosta muito de livros, jogos eletrônicos, boardgames e tiro com arco.

Mirla Costa

Graduanda em Engenharia elétrica pela Universidade Federal do Piauí com pesquisa focada em Aprendizado de Máquina e Inteligência Computacional. Atuo como Scuba na escola de Data Science da Alura sempre amei muito programar, ensinar de trabalhar com tecnologia. Meu tempo livre dedico a brincar com meus animias, assistir animações e séries, além de jogar RPG de mesa.

Owner
Sthe Monica
Instrutora da Alura, engenheira, player de RPG, joguinhos online e apaixonada por tecnologia desde pequena.
Sthe Monica
Forecasting prices using Facebook/Meta's Prophet model

CryptoForecasting using Machine and Deep learning (Part 1) CryptoForecasting using Machine Learning The main aspect of predicting the stock-related da

1 Nov 27, 2021
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
Predicting India’s COVID-19 Third Wave with LSTM

Predicting India’s COVID-19 Third Wave with LSTM Complete project of predicting new COVID-19 cases in the next 90 days with LSTM India is seeing a ste

Samrat Dutta 4 Jan 27, 2022
MaD GUI is a basis for graphical annotation and computational analysis of time series data.

MaD GUI Machine Learning and Data Analytics Graphical User Interface MaD GUI is a basis for graphical annotation and computational analysis of time se

Machine Learning and Data Analytics Lab FAU 10 Dec 19, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
Implementation of linesearch Optimization Algorithms in Python

Nonlinear Optimization Algorithms During my time as Scientific Assistant at the Karlsruhe Institute of Technology (Germany) I implemented various Opti

Paul 3 Dec 06, 2022
InfiniteBoost: building infinite ensembles with gradient descent

InfiniteBoost Code for a paper InfiniteBoost: building infinite ensembles with gradient descent (arXiv:1706.01109). A. Rogozhnikov, T. Likhomanenko De

Alex Rogozhnikov 183 Jan 03, 2023
Reproducibility and Replicability of Web Measurement Studies

Reproducibility and Replicability of Web Measurement Studies This repository holds additional material to the paper "Reproducibility and Replicability

6 Dec 31, 2022
A machine learning toolkit dedicated to time-series data

tslearn The machine learning toolkit for time series analysis in Python Section Description Installation Installing the dependencies and tslearn Getti

2.3k Dec 29, 2022
Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)"

CRAN Unofficial pytorch implementation of the paper "Context Reasoning Attention Network for Image Super-Resolution (ICCV 2021)" This code doesn't exa

4 Nov 11, 2021
Relevance Vector Machine implementation using the scikit-learn API.

scikit-rvm scikit-rvm is a Python module implementing the Relevance Vector Machine (RVM) machine learning technique using the scikit-learn API. Quicks

James Ritchie 204 Nov 18, 2022
A collection of video resources for machine learning

Machine Learning Videos This is a collection of recorded talks at machine learning conferences, workshops, seminars, summer schools, and miscellaneous

Dustin Tran 1.5k Dec 29, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.7k Jan 04, 2023
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
ML-powered Loan-Marketer Customer Filtering Engine

In Loan-Marketing business employees are required to call the user's to buy loans of several fields and in several magnitudes. If employees are calling everybody in the network it is also very length

Sagnik Roy 13 Jul 02, 2022
Probabilistic programming framework that facilitates objective model selection for time-varying parameter models.

Time series analysis today is an important cornerstone of quantitative science in many disciplines, including natural and life sciences as well as eco

Christoph Mark 129 Dec 24, 2022
Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Automated Machine Learning Pipeline for tabular data. Designed for predictive maintenance applications, failure identification, failure prediction, condition monitoring, etc.

Amplo 10 May 15, 2022