glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Overview

Glow-Speak

glow-speak is a fast, local, neural text to speech system that uses eSpeak-ng as a text/phoneme front-end.

Installation

git clone https://github.com/rhasspy/glow-speak.git
cd glow-speak/

python3 -m venv .venv
source .venv/bin/activate
pip3 install --upgrade pip
pip3 install --upgrade setuptools wheel
pip3 install -f 'https://synesthesiam.github.io/prebuilt-apps/' -r requirements.txt

python3 setup.py develop
glow-speak --version

Voices

The following languages/voices are supported:

  • German
    • de_thorsten
  • Chinese
    • cmn_jing_li
  • Greek
    • el_rapunzelina
  • English
    • en-us_ljspeech
    • en-us_mary_ann
  • Spanish
    • es_tux
  • Finnish
    • fi_harri_tapani_ylilammi
  • French
    • fr_siwis
  • Hungarian
    • hu_diana_majlinger
  • Italian
    • it_riccardo_fasol
  • Korean
    • ko_kss
  • Dutch
    • nl_rdh
  • Russian
    • ru_nikolaev
  • Swedish
    • sv_talesyntese
  • Swahili
    • sw_biblia_takatifu
  • Vietnamese
    • vi_vais1000

Usage

Download Voices

glow-speak-download de_thorsten

Command-Line Synthesis

glow-speak -v en-us_mary_ann 'This is a test.' --output-file test.wav

HTTP Server

glow-speak-http-server --debug

Visit http://localhost:5002

Socket Server

Start the server:

glow-speak-socket-server --voice en-us_mary_ann --socket /tmp/glow-speak.sock

From a separate terminal:

echo 'This is a test.' | bin/glow-speak-socket-client --socket /tmp/glow-speak.sock | xargs aplay

Lines from client to server are synthesized, and the path to the WAV file is returned (usually in /tmp).

You might also like...
End-to-End Speech Processing Toolkit
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform tasks on automatic speech recogniti

Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing. To make speech processing available to everyone, we're also releasing example implementation and recipe on some opensource dataset for various tasks (Automatic Speech Recognition, Speech Synthesis, Voice Conversion, Speaker Recognition, etc).

Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.
Open-Source Toolkit for End-to-End Speech Recognition leveraging PyTorch-Lightning and Hydra.

🤗 Contributing to OpenSpeech 🤗 OpenSpeech provides reference implementations of various ASR modeling papers and three languages recipe to perform ta

 SHAS: Approaching optimal Segmentation for End-to-End Speech Translation
SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation In this repo you can find the code of the Supervised Hybrid Audio Segmentatio

An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks

Official PyTorch code for ClipBERT, an efficient framework for end-to-end learning on image-text and video-text tasks. It takes raw videos/images + text as inputs, and outputs task predictions. ClipBERT is designed based on 2D CNNs and transformers, and uses a sparse sampling strategy to enable efficient end-to-end video-and-language learning.

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Comments
  • AssertionError on web interface (only) - and Raspberry Pi Bullseye test

    AssertionError on web interface (only) - and Raspberry Pi Bullseye test

    Hi Micheal,

    great work again! :smiley:

    I just saw this repository and thought I'd give it a try on my freshly installed Raspberry Pi 4 with 32bit Raspberry Pi OS Bullseye (Debian 11). Installation almost finished without errors! :partying_face: ... I just had to fix one thing: sudo apt-get install libatlas-base-dev After 15min I was already generating audio :grin: :+1:

    When I tested en mary_ann and thorsten_de via the web interface I got this error as soon as my test sentence ended with a question mark:

    DEBUG:glow-speak:ɪ_z ð_ɪ_s ɐ_n_ˈʌ_ð_ɚ t_ˈɛ_s_t? .
    ERROR:glow_speak.http_server:
    Traceback (most recent call last):
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/quart/app.py", line 1490, in full_dispatch_request
        result = await self.dispatch_request(request_context)
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/quart/app.py", line 1536, in dispatch_request
        return await self.ensure_async(handler)(**request_.view_args)
      File "/home/pi/glow-speak/glow_speak/http_server.py", line 484, in app_say
        wav_bytes = await text_to_wav(text, voice, **tts_args)
      File "/home/pi/glow-speak/glow_speak/http_server.py", line 323, in text_to_wav
        text_ids = text_to_ids(
      File "/home/pi/glow-speak/glow_speak/__init__.py", line 110, in text_to_ids
        text_ids = phonemes2ids(
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/phonemes2ids/__init__.py", line 190, in phonemes2ids
        maybe_extend_ids(sub_phoneme, word_ids, append_list=False)
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/phonemes2ids/__init__.py", line 108, in maybe_extend_ids
        maybe_ids = missing_func(phoneme)
      File "/home/pi/glow-speak/glow_speak/__init__.py", line 59, in guess_ids
        typing.List[Phoneme], guess_phonemes(phoneme, self.to_phonemes)
      File "/home/pi/glow-speak/.venv/lib/python3.9/site-packages/gruut_ipa/accent.py", line 159, in guess_phonemes
        assert dist_split is not None
    AssertionError
    

    Maybe some encoding error when reading the web input?

    Speed seems pretty good, comparable to Larynx I'd say :+1: and I noticed the pronunciations have been improved for German :clap: :sunglasses:

    opened by fquirin 0
Owner
Rhasspy
Offline voice assistant
Rhasspy
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
GCRC: A Gaokao Chinese Reading Comprehension dataset for interpretable Evaluation

GCRC GCRC: A New Challenging MRC Dataset from Gaokao Chinese for Explainable Eva

Yunxiao Zhao 5 Nov 04, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
FireFlyer Record file format, writer and reader for DL training samples.

FFRecord The FFRecord format is a simple format for storing a sequence of binary records developed by HFAiLab, which supports random access and Linux

77 Jan 04, 2023
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
Negative sampling for solving the unlabeled entity problem in NER. ICLR-2021 paper: Empirical Analysis of Unlabeled Entity Problem in Named Entity Recognition.

Negative Sampling for NER Unlabeled entity problem is prevalent in many NER scenarios (e.g., weakly supervised NER). Our paper in ICLR-2021 proposes u

Yangming Li 128 Dec 29, 2022
Legal text retrieval for python

legal-text-retrieval Overview This system contains 2 steps: generate training data containing negative sample found by mixture score of cosine(tfidf)

Nguyễn Minh Phương 22 Dec 06, 2022
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
LCG T-TEST USING EUCLIDEAN METHOD

This project has been created for statistical usage, purposing for determining ATL takers and nontakers using LCG ttest and Euclidean Method, especially for internal business case in Telkomsel.

2 Jan 21, 2022
precise iris segmentation

PI-DECODER Introduction PI-DECODER, a decoder structure designed for Precise Iris Segmentation and Location. The decoder structure is shown below: Ple

8 Aug 08, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
YACLC - Yet Another Chinese Learner Corpus

汉语学习者文本多维标注数据集YACLC V1.0 中文 | English 汉语学习者文本多维标注数据集(Yet Another Chinese Learner

BLCU-ICALL 47 Dec 15, 2022
Optimal Transport Tools (OTT), A toolbox for all things Wasserstein.

Optimal Transport Tools (OTT), A toolbox for all things Wasserstein. See full documentation for detailed info on the toolbox. The goal of OTT is to pr

OTT-JAX 255 Dec 26, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
GSoC'2021 | TensorFlow implementation of Wav2Vec2

GSoC'2021 | TensorFlow implementation of Wav2Vec2

Vasudev Gupta 73 Nov 28, 2022
This project deals with a simplified version of a more general problem of Aspect Based Sentiment Analysis.

Aspect_Based_Sentiment_Extraction Created on: 5th Jan, 2022. This project deals with an important field of Natural Lnaguage Processing - Aspect Based

Naman Rastogi 4 Jan 01, 2023
The swas programming language

The Swas programming language This is a language that was made for fun. Installation Step 0: Make sure you have python installed Step 1. Clone this re

Swas.py 19 Jul 18, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023