SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

Overview

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

In this repo you can find the code of the Supervised Hybrid Audio Segmentation (SHAS) method for End-to-End Speech Translation, proposed in Tsiamas et al. (2022). You can use our method with pre-trained models to segment a collection of audio files or train and fine-tune our method on your own segmented data. We provide instructions to replicate our results from the paper on MuST-C en-de and mTEDx es-en, fr-en, it-en, pt-en. You can also find easy-to-use implementations of other segmentation methods, like fixed-length, VAD, and the hybrid methods of Potapczyk and Przybysz (2020), Gállego et al. (2021), and Gaido et al. (2021).

Follow the instructions here to segment a collection of audio files, or the instruction here to replicate the results of the paper.

Abstract

Speech translation models are unable to directly process long audios, like TED talks, which have to be split into shorter segments. Speech translation datasets provide manual segmentations of the audios, which are not available in real-world scenarios, and existing segmentation methods usually significantly reduce translation quality at inference time. To bridge the gap between the manual segmentation of training and the automatic one at inference, we propose Supervised Hybrid Audio Segmentation (SHAS), a method that can effectively learn the optimal segmentation from any manually segmented speech corpus. First, we train a classifier to identify the included frames in a segmentation, using speech representations from a pre-trained wav2vec 2.0. The optimal splitting points are then found by a probabilistic Divide-and-Conquer algorithm that progressively splits at the frame of lowest probability until all segments are below a pre-specified length. Experiments on MuST-C and mTEDx show that the translation of the segments produced by our method approaches the quality of the manual segmentation on 5 languages pairs. Namely, SHAS retains 95-98% of the manual segmentation's BLEU score, compared to the 87-93% of the best existing methods. Our method is additionally generalizable to different domains and achieves high zero-shot performance in unseen languages.

Results

Citation

If you find SHAS or the contents of this repo useful for your research, please consider citing:

@misc{tsiamas2022shas,
      title={SHAS: Approaching optimal Segmentation for End-to-End Speech Translation}, 
      author={Ioannis Tsiamas and Gerard I. Gállego and José A. R. Fonollosa and Marta R. Costa-jussà},
      year={2022},
      eprint={2202.04774},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

Usage

Clone this repository to $SHAS_ROOT:

git clone https://github.com/mt-upc/SHAS.git ${SHAS_ROOT}    

Create a conda environment using the environment.yml file and activate it:

conda env create -f ${SHAS_ROOT}/environment.yml && \
conda activate shas

Segmentation with SHAS

Download one of the available pre-trained segmentation frame classifiers required for the SHAS method:

English Spanish French Italian Portuguese Multilingual

Make sure that the audio files you want to segment are in .wav format, mono, and sampled at 16kHz. You can convert them with:

path_to_wavs=...                       # path to the audio files that will be segmented
ls ${path_to_wavs}/*.* | parallel -j 4 ffmpeg -i {} -ac 1 -ar 16000 -hide_banner -loglevel error {.}.wav

Segment a collection of audio files with the SHAS method. This includes inference with the classifier and application of a probabilistic Divide-and-Conquer (pDAC) algorithm:

python ${SHAS_ROOT}/src/supervised_hybrid/segment.py \
  -wavs $path_to_wavs \                       # path to the audio files that will be segmented
  -ckpt $path_to_checkpoint \                 # path to the checkpoint of a trained segmentation frame classifier
  -yaml $path_to_custom_segmentation_yaml \   # where to save the custom segmentation yaml file
  -max $max_segment_length                    # the core parameter of pDAC (in seconds, empirically values between 14-18 work well)

Segmentation with other methods

Length-based (fixed-length) segmentation:

python ${SHAS_ROOT}/src/segmentation_methods/length_based.py \
  -wavs $path_to_wavs \
  -yaml $path_to_custom_segmentation_yaml \
  -n $segment_length    # (in seconds)

Pause-based segmentation with webrtc VAD:

python ${SHAS_ROOT}/src/segmentation_methods/pause_based.py \
  -wavs $path_to_wavs \
  -yaml $path_to_custom_segmentation_yaml \
  -l $frame_length \        # 10, 20 or 30
  -a $aggressiveness_mode   # 1, 2 or 3

Hybrid segmentation with either wav2vec 2.0 or VAD as pause predictor, and either the DAC or Streaming algorithms:

python ${SHAS_ROOT}/src/segmentation_methods/hybrid.py \
  -wavs $path_to_wavs \
  -yaml $path_to_custom_segmentation_yaml \
  -pause $pause_predictor \         # wav2vec or vad
  -alg $algorithm \                 # dac or strm
  -max $max_segment_length \        # (in seconds)
  -min $min_segment_length          # (in seconds) only active for the strm alg

More extensive usage

Follow these steps to replicate the results of the paper. Download the MuST-C and mTEDx data, prepare them for the Segmentation Frame Classifier training, train the classifier, generate a segmentation of a test set, translate the segments with Joint Speech-to-Text models from fairseq, do hypothesis-reference alignment, and compute BLEU scores.

Setting up the environment

Set the environment variables:

export SHAS_ROOT=...                # the path to this repo
export MUSTC_ROOT=...               # the path to save MuST-C v2.0
export MTEDX_ROOT=...               # the path to save mTEDx
export SEGM_DATASETS_ROOT=...       # the path to save the outputs of data_prep/prepare_dataset_for_segmentation
export ST_MODELS_PATH=...           # the path to the pre-trained joint-s2t models from fairseq
export RESULTS_ROOT=...             # the path to the results
export FAIRSEQ_ROOT=...             # the path to our fairseq fork
export MWERSEGMENTER_ROOT=...       # the path to the mwerSegmenter tool

Clone this repository to $SHAS_ROOT:

git clone https://github.com/mt-upc/SHAS.git ${SHAS_ROOT}    

If you want to evaluate a custom segmentation, the translated segments have to be aligned with the reference translations of the manual segmentation. We are using the mwerSegmenter for the alignment. Create a secondary python2 environment for using mwerSegmenter:

conda create -n p2-shas python=2.7

Download mwerSegmenter at ${MWERSEGMENTER_ROOT} and follow the instructions in ${MWERSEGMENTER_ROOT}/README to install it:

mkdir -p $MWERSEGMENTER_ROOT
wget https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
tar -zxvf mwerSegmenter.tar.gz -C ${MWERSEGMENTER_ROOT}
rm -r mwerSegmenter.tar.gz

Create a conda environment using the environment.yml file and activate it:

conda env create -f ${SHAS_ROOT}/environment.yml && \
conda activate shas

We are using fairseq for Speech Translation. Install our fork of fairseq:

git clone -b audio-segment-2022 https://github.com/mt-upc/fairseq-internal.git ${FAIRSEQ_ROOT}
pip install --editable ${FAIRSEQ_ROOT}

Note: You can also use the latest public fairseq version, but BLEU scores will have minor differences with the ones reported in the paper.

Data

Download MuST-C v2 en-de to $MUSTC_ROOT:
The dataset is available here. Press the bottom ”click here to download the corpus”, and select version V2.

Download the mTEDx x-en and ASR data to $MTEDX_ROOT:

mkdir -p ${MTEDX_ROOT}
mkdir -p ${MTEDX_ROOT}/log_dir
for lang_pair in {es-en,fr-en,pt-en,it-en,es,fr,pt,it}; do
  wget https://www.openslr.org/resources/100/mtedx_${lang_pair}.tgz -o ${MTEDX_ROOT}/log_dir/${lang_pair} -c -b -O - | tar -xz -C ${MTEDX_ROOT}
done

Convert to mono and downsample at 16kHz:

ls ${MTEDX_ROOT}/*/data/{train,valid,test}/wav/*.flac | parallel -j 12 ffmpeg -i {} -ac 1 -ar 16000 -hide_banner -loglevel error {.}.wav

Prepare the datasets for segmentation

We create two tsv files (talks, segments) for each triplet of dataset-lang_pair-split. These will be used during training to create training examples by random segmentation and during evaluation to create fixed segmentation for inference.

# MuST-C en-de
mkdir -p ${SEGM_DATASETS_ROOT}/MUSTC/en-de
for split in {train,dev,tst-COMMON}; do
  python ${SHAS_ROOT}/src/data_prep/prepare_dataset_for_segmentation.py \
    -y ${MUSTC_ROOT}/en-de/data/${split}/txt/${split}.yaml \
    -w ${MUSTC_ROOT}/en-de/data/${split}/wav \
    -o ${SEGM_DATASETS_ROOT}/MUSTC/en-de
done
# mTEDx
for lang_pair in {es-en,fr-en,pt-en,it-en,es-es,fr-fr,pt-pt,it-it}; do
  mkdir -p ${SEGM_DATASETS_ROOT}/mTEDx/${lang_pair}
  for split in {train,valid,test}; do
    python ${SHAS_ROOT}/src/data_prep/prepare_dataset_for_segmentation.py \
      -y ${MTEDX_ROOT}/${lang_pair}/data/${split}/txt/${split}.yaml \
      -w ${MTEDX_ROOT}/${lang_pair}/data/${split}/wav \
      -o ${SEGM_DATASETS_ROOT}/mTEDx/${lang_pair}
  done
done

Download pre-trained Speech Translation models

For translating the custom segmentations we are using the Joint Speech-to-Text models from fairseq. Download the bilingual model trained on MuST-C en-de and the multlingual model trained on mTEDx:

# joint-s2t-mustc-en-de
en_de_model_path=${ST_MODELS_PATH}/joint-s2t-mustc-en-de
mkdir -p $en_de_model_path
for file in {checkpoint_ave_10.pt,config.yaml,src_dict.txt,dict.txt,spm.model}; docheck
  wget https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/${file} -O $en_de_model_path/${file}
done
# joint-s2t-multilingual
mult_model_path=${ST_MODELS_PATH}/joint-s2t-multilingual
mkdir -p $mult_model_path
for file in {checkpoint17.pt,config.yaml,tgt_dict.txt,dict.txt,spm.model}; do
  wget https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/${file} -O $mult_model_path/${file}
done

To generate translation with the ST models, we have to modify the path of the spm.model in the task configs and remove some hardcoded paths from the cfg arguments of the checkpoints.

sed -i "s+/path/spm.model+${en_de_model_path}/spm.model+" ${en_de_model_path}/config.yaml
python ${SHAS_ROOT}/src/data_prep/fix_joint_s2t_cfg.py -c ${en_de_model_path}/checkpoint_ave_10.pt
sed -i "s+/path/spm.model+${mult_model_path}/spm.model+" ${mult_model_path}/config.yaml
python ${SHAS_ROOT}/src/data_prep/fix_joint_s2t_cfg.py -c ${mult_model_path}/checkpoint17.pt

Train a Segmentation Frame Classifier (SFC) model

For a monolingual model (for example on English speech):

experiment_name=en_sfc_model
python ${SHAS_ROOT}/src/supervised_hybrid/train.py \
    --datasets ${SEGM_DATASETS_ROOT}/MUSTC/en-de \
    --results_path ${RESULTS_ROOT}/supervised_hybrid \
    --model_name facebook/wav2vec2-xls-r-300m \
    --experiment_name $experiment_name \
    --train_sets tst-COMMON \
    --eval_sets dev \
    --batch_size 14 \
    --learning_rate 2.5e-4 \
    --update_freq 20 \
    --max_epochs 8 \
    --classifier_n_transformer_layers 1 \
    --wav2vec_keep_layers 15

For a multilingual model trained on (English, Spanish, French, Italian, Portuguese) speech:

experiment_name=mult_sfc_model
python ${SHAS_ROOT}/src/supervised_hybrid/train.py \
    --datasets ${SEGM_DATASETS_ROOT}/MUSTC/en-de,${SEGM_DATASETS_ROOT}/mTEDx/es-es,${SEGM_DATASETS_ROOT}/mTEDx/fr-fr,${SEGM_DATASETS_ROOT}/mTEDx/it-it,${SEGM_DATASETS_ROOT}/mTEDx/pt-pt \
    --results_path ${RESULTS_ROOT}/supervised_hybrid \
    --model_name facebook/wav2vec2-xls-r-300m \
    --experiment_name $experiment_name \
    --train_sets train,train,train,train,train \
    --eval_sets dev,valid,valid,valid,valid \
    --batch_size 14 \
    --learning_rate 2.5e-4 \
    --update_freq 20 \
    --max_epochs 8 \
    --classifier_n_transformer_layers 2 \
    --wav2vec_keep_layers 15

(The above commands assume 1 active GPU, adjust accordingly the update_freq if you are using more)

Create a segmentation the SHAS method

Segment a collection of audio files, by doing inference with a trained Segmentation Frame Classifier and applying a probabilistic Divide-and-Conquer (pDAC) algorithm:

python ${SHAS_ROOT}/src/supervised_hybrid/segment.py \
  -wavs $path_to_wavs \                       # path to the audio files that will be segmented
  -ckpt $path_to_checkpoint \                 # path to the checkpoint of a trained segmentation frame classifier
  -yaml $path_to_custom_segmentation_yaml \   # where to save the custom segmentation yaml file
  -max $max_segment_length                    # the core parameter of pDAC (in seconds, empirically values between 14-18 work well)

Translate the segments and evaluate the translations

The eval_custom_segmentation.sh performs the following tasks:

  • (1): translates the segments using an ST model;
  • (2): does hypothesis-reference alignment with mwerSegmenter;
  • (3): computes scores with sacreBLEU;
bash ${SHAS_ROOT}/src/eval_scripts/eval_custom_segmentation.sh \
  $path_to_wavs \                               # path to the audio files that will be segmented
  $path_to_custom_segmentation_yaml \           # path to the custom segmentation yaml from segment.py
  $path_to_original_segmentation_yaml \         # path to the original segmentation yaml
  $path_to_original_segment_transcriptions \    # path to the text file of the original segment transcriptions
  $path_to_original_segment_translations \      # path to the text file of the original segment translations
  $src_lang \                                   # the source language id (for example: en)
  $tgt_lang \                                   # the target language id (for example: de)
  $path_to_st_model_ckpt                        # path to the checkpoint of the joint-s2t model (use the joint-s2t-mustc-en-de for en source and joint-s2t-multilingual for the rest)
Owner
Machine Translation @ UPC
Hi, we are the UPC Machine Translation Group! 👋
Machine Translation @ UPC
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022
A fast, efficient universal vector embedding utility package.

Magnitude: a fast, simple vector embedding utility library A feature-packed Python package and vector storage file format for utilizing vector embeddi

Plasticity 1.5k Jan 02, 2023
Machine learning classifiers to predict American Sign Language .

ASL-Classifiers American Sign Language (ASL) is a natural language that serves as the predominant sign language of Deaf communities in the United Stat

Tarek idrees 0 Feb 08, 2022
Proquabet - Convert your prose into proquints and then you essentially have Vogon poetry

Proquabet Turn your prose into a constant stream of encrypted and meaningless-so

Milo Fultz 2 Oct 10, 2022
Implementation of Multistream Transformers in Pytorch

Multistream Transformers Implementation of Multistream Transformers in Pytorch. This repository deviates slightly from the paper, where instead of usi

Phil Wang 47 Jul 26, 2022
Spam filtering made easy for you

spammy Author: Tasdik Rahman Latest version: 1.0.3 Contents 1 Overview 2 Features 3 Example 3.1 Accuracy of the classifier 4 Installation 4.1 Upgradin

Tasdik Rahman 137 Dec 18, 2022
PyJPBoatRace: Python-based Japanese boatrace tools 🚤

pyjpboatrace :speedboat: provides you with useful tools for data analysis and auto-betting for boatrace.

5 Oct 29, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
Unsupervised Language Modeling at scale for robust sentiment classification

** DEPRECATED ** This repo has been deprecated. Please visit Megatron-LM for our up to date Large-scale unsupervised pretraining and finetuning code.

NVIDIA Corporation 1k Nov 17, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
Gathers machine learning and Tensorflow deep learning models for NLP problems, 1.13 < Tensorflow < 2.0

NLP-Models-Tensorflow, Gathers machine learning and tensorflow deep learning models for NLP problems, code simplify inside Jupyter Notebooks 100%. Tab

HUSEIN ZOLKEPLI 1.7k Dec 30, 2022
PyTorch code for EMNLP 2019 paper "LXMERT: Learning Cross-Modality Encoder Representations from Transformers".

LXMERT: Learning Cross-Modality Encoder Representations from Transformers Our servers break again :(. I have updated the links so that they should wor

Hao Tan 838 Dec 19, 2022
💛 Code and Dataset for our EMNLP 2021 paper: "Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes"

Perspective-taking and Pragmatics for Generating Empathetic Responses Focused on Emotion Causes Official PyTorch implementation and EmoCause evaluatio

Hyunwoo Kim 50 Dec 21, 2022
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
Korean Sentence Embedding Repository

Korean-Sentence-Embedding 🍭 Korean sentence embedding repository. You can download the pre-trained models and inference right away, also it provides

80 Jan 02, 2023
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022