SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

Overview

SHAS: Approaching optimal Segmentation for End-to-End Speech Translation

In this repo you can find the code of the Supervised Hybrid Audio Segmentation (SHAS) method for End-to-End Speech Translation, proposed in Tsiamas et al. (2022). You can use our method with pre-trained models to segment a collection of audio files or train and fine-tune our method on your own segmented data. We provide instructions to replicate our results from the paper on MuST-C en-de and mTEDx es-en, fr-en, it-en, pt-en. You can also find easy-to-use implementations of other segmentation methods, like fixed-length, VAD, and the hybrid methods of Potapczyk and Przybysz (2020), Gállego et al. (2021), and Gaido et al. (2021).

Follow the instructions here to segment a collection of audio files, or the instruction here to replicate the results of the paper.

Abstract

Speech translation models are unable to directly process long audios, like TED talks, which have to be split into shorter segments. Speech translation datasets provide manual segmentations of the audios, which are not available in real-world scenarios, and existing segmentation methods usually significantly reduce translation quality at inference time. To bridge the gap between the manual segmentation of training and the automatic one at inference, we propose Supervised Hybrid Audio Segmentation (SHAS), a method that can effectively learn the optimal segmentation from any manually segmented speech corpus. First, we train a classifier to identify the included frames in a segmentation, using speech representations from a pre-trained wav2vec 2.0. The optimal splitting points are then found by a probabilistic Divide-and-Conquer algorithm that progressively splits at the frame of lowest probability until all segments are below a pre-specified length. Experiments on MuST-C and mTEDx show that the translation of the segments produced by our method approaches the quality of the manual segmentation on 5 languages pairs. Namely, SHAS retains 95-98% of the manual segmentation's BLEU score, compared to the 87-93% of the best existing methods. Our method is additionally generalizable to different domains and achieves high zero-shot performance in unseen languages.

Results

Citation

If you find SHAS or the contents of this repo useful for your research, please consider citing:

@misc{tsiamas2022shas,
      title={SHAS: Approaching optimal Segmentation for End-to-End Speech Translation}, 
      author={Ioannis Tsiamas and Gerard I. Gállego and José A. R. Fonollosa and Marta R. Costa-jussà},
      year={2022},
      eprint={2202.04774},
      archivePrefix={arXiv},
      primaryClass={cs.SD}
}

Usage

Clone this repository to $SHAS_ROOT:

git clone https://github.com/mt-upc/SHAS.git ${SHAS_ROOT}    

Create a conda environment using the environment.yml file and activate it:

conda env create -f ${SHAS_ROOT}/environment.yml && \
conda activate shas

Segmentation with SHAS

Download one of the available pre-trained segmentation frame classifiers required for the SHAS method:

English Spanish French Italian Portuguese Multilingual

Make sure that the audio files you want to segment are in .wav format, mono, and sampled at 16kHz. You can convert them with:

path_to_wavs=...                       # path to the audio files that will be segmented
ls ${path_to_wavs}/*.* | parallel -j 4 ffmpeg -i {} -ac 1 -ar 16000 -hide_banner -loglevel error {.}.wav

Segment a collection of audio files with the SHAS method. This includes inference with the classifier and application of a probabilistic Divide-and-Conquer (pDAC) algorithm:

python ${SHAS_ROOT}/src/supervised_hybrid/segment.py \
  -wavs $path_to_wavs \                       # path to the audio files that will be segmented
  -ckpt $path_to_checkpoint \                 # path to the checkpoint of a trained segmentation frame classifier
  -yaml $path_to_custom_segmentation_yaml \   # where to save the custom segmentation yaml file
  -max $max_segment_length                    # the core parameter of pDAC (in seconds, empirically values between 14-18 work well)

Segmentation with other methods

Length-based (fixed-length) segmentation:

python ${SHAS_ROOT}/src/segmentation_methods/length_based.py \
  -wavs $path_to_wavs \
  -yaml $path_to_custom_segmentation_yaml \
  -n $segment_length    # (in seconds)

Pause-based segmentation with webrtc VAD:

python ${SHAS_ROOT}/src/segmentation_methods/pause_based.py \
  -wavs $path_to_wavs \
  -yaml $path_to_custom_segmentation_yaml \
  -l $frame_length \        # 10, 20 or 30
  -a $aggressiveness_mode   # 1, 2 or 3

Hybrid segmentation with either wav2vec 2.0 or VAD as pause predictor, and either the DAC or Streaming algorithms:

python ${SHAS_ROOT}/src/segmentation_methods/hybrid.py \
  -wavs $path_to_wavs \
  -yaml $path_to_custom_segmentation_yaml \
  -pause $pause_predictor \         # wav2vec or vad
  -alg $algorithm \                 # dac or strm
  -max $max_segment_length \        # (in seconds)
  -min $min_segment_length          # (in seconds) only active for the strm alg

More extensive usage

Follow these steps to replicate the results of the paper. Download the MuST-C and mTEDx data, prepare them for the Segmentation Frame Classifier training, train the classifier, generate a segmentation of a test set, translate the segments with Joint Speech-to-Text models from fairseq, do hypothesis-reference alignment, and compute BLEU scores.

Setting up the environment

Set the environment variables:

export SHAS_ROOT=...                # the path to this repo
export MUSTC_ROOT=...               # the path to save MuST-C v2.0
export MTEDX_ROOT=...               # the path to save mTEDx
export SEGM_DATASETS_ROOT=...       # the path to save the outputs of data_prep/prepare_dataset_for_segmentation
export ST_MODELS_PATH=...           # the path to the pre-trained joint-s2t models from fairseq
export RESULTS_ROOT=...             # the path to the results
export FAIRSEQ_ROOT=...             # the path to our fairseq fork
export MWERSEGMENTER_ROOT=...       # the path to the mwerSegmenter tool

Clone this repository to $SHAS_ROOT:

git clone https://github.com/mt-upc/SHAS.git ${SHAS_ROOT}    

If you want to evaluate a custom segmentation, the translated segments have to be aligned with the reference translations of the manual segmentation. We are using the mwerSegmenter for the alignment. Create a secondary python2 environment for using mwerSegmenter:

conda create -n p2-shas python=2.7

Download mwerSegmenter at ${MWERSEGMENTER_ROOT} and follow the instructions in ${MWERSEGMENTER_ROOT}/README to install it:

mkdir -p $MWERSEGMENTER_ROOT
wget https://www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
tar -zxvf mwerSegmenter.tar.gz -C ${MWERSEGMENTER_ROOT}
rm -r mwerSegmenter.tar.gz

Create a conda environment using the environment.yml file and activate it:

conda env create -f ${SHAS_ROOT}/environment.yml && \
conda activate shas

We are using fairseq for Speech Translation. Install our fork of fairseq:

git clone -b audio-segment-2022 https://github.com/mt-upc/fairseq-internal.git ${FAIRSEQ_ROOT}
pip install --editable ${FAIRSEQ_ROOT}

Note: You can also use the latest public fairseq version, but BLEU scores will have minor differences with the ones reported in the paper.

Data

Download MuST-C v2 en-de to $MUSTC_ROOT:
The dataset is available here. Press the bottom ”click here to download the corpus”, and select version V2.

Download the mTEDx x-en and ASR data to $MTEDX_ROOT:

mkdir -p ${MTEDX_ROOT}
mkdir -p ${MTEDX_ROOT}/log_dir
for lang_pair in {es-en,fr-en,pt-en,it-en,es,fr,pt,it}; do
  wget https://www.openslr.org/resources/100/mtedx_${lang_pair}.tgz -o ${MTEDX_ROOT}/log_dir/${lang_pair} -c -b -O - | tar -xz -C ${MTEDX_ROOT}
done

Convert to mono and downsample at 16kHz:

ls ${MTEDX_ROOT}/*/data/{train,valid,test}/wav/*.flac | parallel -j 12 ffmpeg -i {} -ac 1 -ar 16000 -hide_banner -loglevel error {.}.wav

Prepare the datasets for segmentation

We create two tsv files (talks, segments) for each triplet of dataset-lang_pair-split. These will be used during training to create training examples by random segmentation and during evaluation to create fixed segmentation for inference.

# MuST-C en-de
mkdir -p ${SEGM_DATASETS_ROOT}/MUSTC/en-de
for split in {train,dev,tst-COMMON}; do
  python ${SHAS_ROOT}/src/data_prep/prepare_dataset_for_segmentation.py \
    -y ${MUSTC_ROOT}/en-de/data/${split}/txt/${split}.yaml \
    -w ${MUSTC_ROOT}/en-de/data/${split}/wav \
    -o ${SEGM_DATASETS_ROOT}/MUSTC/en-de
done
# mTEDx
for lang_pair in {es-en,fr-en,pt-en,it-en,es-es,fr-fr,pt-pt,it-it}; do
  mkdir -p ${SEGM_DATASETS_ROOT}/mTEDx/${lang_pair}
  for split in {train,valid,test}; do
    python ${SHAS_ROOT}/src/data_prep/prepare_dataset_for_segmentation.py \
      -y ${MTEDX_ROOT}/${lang_pair}/data/${split}/txt/${split}.yaml \
      -w ${MTEDX_ROOT}/${lang_pair}/data/${split}/wav \
      -o ${SEGM_DATASETS_ROOT}/mTEDx/${lang_pair}
  done
done

Download pre-trained Speech Translation models

For translating the custom segmentations we are using the Joint Speech-to-Text models from fairseq. Download the bilingual model trained on MuST-C en-de and the multlingual model trained on mTEDx:

# joint-s2t-mustc-en-de
en_de_model_path=${ST_MODELS_PATH}/joint-s2t-mustc-en-de
mkdir -p $en_de_model_path
for file in {checkpoint_ave_10.pt,config.yaml,src_dict.txt,dict.txt,spm.model}; docheck
  wget https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/must_c/en_de/${file} -O $en_de_model_path/${file}
done
# joint-s2t-multilingual
mult_model_path=${ST_MODELS_PATH}/joint-s2t-multilingual
mkdir -p $mult_model_path
for file in {checkpoint17.pt,config.yaml,tgt_dict.txt,dict.txt,spm.model}; do
  wget https://dl.fbaipublicfiles.com/joint_speech_text_4_s2t/iwslt/iwslt_data/${file} -O $mult_model_path/${file}
done

To generate translation with the ST models, we have to modify the path of the spm.model in the task configs and remove some hardcoded paths from the cfg arguments of the checkpoints.

sed -i "s+/path/spm.model+${en_de_model_path}/spm.model+" ${en_de_model_path}/config.yaml
python ${SHAS_ROOT}/src/data_prep/fix_joint_s2t_cfg.py -c ${en_de_model_path}/checkpoint_ave_10.pt
sed -i "s+/path/spm.model+${mult_model_path}/spm.model+" ${mult_model_path}/config.yaml
python ${SHAS_ROOT}/src/data_prep/fix_joint_s2t_cfg.py -c ${mult_model_path}/checkpoint17.pt

Train a Segmentation Frame Classifier (SFC) model

For a monolingual model (for example on English speech):

experiment_name=en_sfc_model
python ${SHAS_ROOT}/src/supervised_hybrid/train.py \
    --datasets ${SEGM_DATASETS_ROOT}/MUSTC/en-de \
    --results_path ${RESULTS_ROOT}/supervised_hybrid \
    --model_name facebook/wav2vec2-xls-r-300m \
    --experiment_name $experiment_name \
    --train_sets tst-COMMON \
    --eval_sets dev \
    --batch_size 14 \
    --learning_rate 2.5e-4 \
    --update_freq 20 \
    --max_epochs 8 \
    --classifier_n_transformer_layers 1 \
    --wav2vec_keep_layers 15

For a multilingual model trained on (English, Spanish, French, Italian, Portuguese) speech:

experiment_name=mult_sfc_model
python ${SHAS_ROOT}/src/supervised_hybrid/train.py \
    --datasets ${SEGM_DATASETS_ROOT}/MUSTC/en-de,${SEGM_DATASETS_ROOT}/mTEDx/es-es,${SEGM_DATASETS_ROOT}/mTEDx/fr-fr,${SEGM_DATASETS_ROOT}/mTEDx/it-it,${SEGM_DATASETS_ROOT}/mTEDx/pt-pt \
    --results_path ${RESULTS_ROOT}/supervised_hybrid \
    --model_name facebook/wav2vec2-xls-r-300m \
    --experiment_name $experiment_name \
    --train_sets train,train,train,train,train \
    --eval_sets dev,valid,valid,valid,valid \
    --batch_size 14 \
    --learning_rate 2.5e-4 \
    --update_freq 20 \
    --max_epochs 8 \
    --classifier_n_transformer_layers 2 \
    --wav2vec_keep_layers 15

(The above commands assume 1 active GPU, adjust accordingly the update_freq if you are using more)

Create a segmentation the SHAS method

Segment a collection of audio files, by doing inference with a trained Segmentation Frame Classifier and applying a probabilistic Divide-and-Conquer (pDAC) algorithm:

python ${SHAS_ROOT}/src/supervised_hybrid/segment.py \
  -wavs $path_to_wavs \                       # path to the audio files that will be segmented
  -ckpt $path_to_checkpoint \                 # path to the checkpoint of a trained segmentation frame classifier
  -yaml $path_to_custom_segmentation_yaml \   # where to save the custom segmentation yaml file
  -max $max_segment_length                    # the core parameter of pDAC (in seconds, empirically values between 14-18 work well)

Translate the segments and evaluate the translations

The eval_custom_segmentation.sh performs the following tasks:

  • (1): translates the segments using an ST model;
  • (2): does hypothesis-reference alignment with mwerSegmenter;
  • (3): computes scores with sacreBLEU;
bash ${SHAS_ROOT}/src/eval_scripts/eval_custom_segmentation.sh \
  $path_to_wavs \                               # path to the audio files that will be segmented
  $path_to_custom_segmentation_yaml \           # path to the custom segmentation yaml from segment.py
  $path_to_original_segmentation_yaml \         # path to the original segmentation yaml
  $path_to_original_segment_transcriptions \    # path to the text file of the original segment transcriptions
  $path_to_original_segment_translations \      # path to the text file of the original segment translations
  $src_lang \                                   # the source language id (for example: en)
  $tgt_lang \                                   # the target language id (for example: de)
  $path_to_st_model_ckpt                        # path to the checkpoint of the joint-s2t model (use the joint-s2t-mustc-en-de for en source and joint-s2t-multilingual for the rest)
Owner
Machine Translation @ UPC
Hi, we are the UPC Machine Translation Group! 👋
Machine Translation @ UPC
Finally, some decent sample sentences

tts-dataset-prompts This repository aims to be a decent set of sentences for people looking to clone their own voices (e.g. using Tacotron 2). Each se

hecko 19 Dec 13, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
ALBERT: A Lite BERT for Self-supervised Learning of Language Representations

ALBERT ***************New March 28, 2020 *************** Add a colab tutorial to run fine-tuning for GLUE datasets. ***************New January 7, 2020

Google Research 3k Dec 26, 2022
BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network)

BERTAC (BERT-style transformer-based language model with Adversarially pretrained Convolutional neural network) BERTAC is a framework that combines a

6 Jan 24, 2022
Pytorch-Named-Entity-Recognition-with-BERT

BERT NER Use google BERT to do CoNLL-2003 NER ! Train model using Python and Inference using C++ ALBERT-TF2.0 BERT-NER-TENSORFLOW-2.0 BERT-SQuAD Requi

Kamal Raj 1.1k Dec 25, 2022
AI-powered literature discovery and review engine for medical/scientific papers

AI-powered literature discovery and review engine for medical/scientific papers paperai is an AI-powered literature discovery and review engine for me

NeuML 819 Dec 30, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
VMD Audio/Text control with natural language

This repository is a proof of principle for performing Molecular Dynamics analysis, in this case with the program VMD, via natural language commands.

Andrew White 13 Jun 09, 2022
Code Generation using a large neural network called GPT-J

CodeGenX is a Code Generation system powered by Artificial Intelligence! It is delivered to you in the form of a Visual Studio Code Extension and is Free and Open-source!

DeepGenX 389 Dec 31, 2022
An easy to use, user-friendly and efficient code for extracting OpenAI CLIP (Global/Grid) features from image and text respectively.

Extracting OpenAI CLIP (Global/Grid) Features from Image and Text This repo aims at providing an easy to use and efficient code for extracting image &

Jianjie(JJ) Luo 13 Jan 06, 2023
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

286 Jan 02, 2023
AllenNLP integration for Shiba: Japanese CANINE model

Allennlp Integration for Shiba allennlp-shiab-model is a Python library that provides AllenNLP integration for shiba-model. SHIBA is an approximate re

Shunsuke KITADA 12 Feb 16, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Chinese NewsTitle Generation Project by GPT2.带有超级详细注释的中文GPT2新闻标题生成项目。

GPT2-NewsTitle 带有超详细注释的GPT2新闻标题生成项目 UpDate 01.02.2021 从网上收集数据,将清华新闻数据、搜狗新闻数据等新闻数据集,以及开源的一些摘要数据进行整理清洗,构建一个较完善的中文摘要数据集。 数据集清洗时,仅进行了简单地规则清洗。

logCong 785 Dec 29, 2022
Google AI 2018 BERT pytorch implementation

BERT-pytorch Pytorch implementation of Google AI's 2018 BERT, with simple annotation BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers f

Junseong Kim 5.3k Jan 07, 2023
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
AMUSE - financial summarization

AMUSE AMUSE - financial summarization Unzip data.zip Train new model: python FinAnalyze.py --task train --start 0 --count how many files,-1 for all

1 Jan 11, 2022
DeepAmandine is an artificial intelligence that allows you to talk to it for hours, you won't know the difference.

DeepAmandine This is an artificial intelligence based on GPT-3 that you can chat with, it is very nice and makes a lot of jokes. We wish you a good ex

BuyWithCrypto 3 Apr 19, 2022
A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

A framework for evaluating Knowledge Graph Embedding Models in a fine-grained manner.

NEC Laboratories Europe 13 Sep 08, 2022