Pytorch-Named-Entity-Recognition-with-BERT

Overview

BERT NER

Use google BERT to do CoNLL-2003 NER !

new Train model using Python and Inference using C++

ALBERT-TF2.0

BERT-NER-TENSORFLOW-2.0

BERT-SQuAD

Requirements

  • python3
  • pip3 install -r requirements.txt

Run

python run_ner.py --data_dir=data/ --bert_model=bert-base-cased --task_name=ner --output_dir=out_base --max_seq_length=128 --do_train --num_train_epochs 5 --do_eval --warmup_proportion=0.1

Result

BERT-BASE

Validation Data

             precision    recall  f1-score   support

        PER     0.9677    0.9745    0.9711      1842
        LOC     0.9654    0.9711    0.9682      1837
       MISC     0.8851    0.9111    0.8979       922
        ORG     0.9299    0.9292    0.9295      1341

avg / total     0.9456    0.9534    0.9495      5942

Test Data

             precision    recall  f1-score   support

        PER     0.9635    0.9629    0.9632      1617
        ORG     0.8883    0.9097    0.8989      1661
        LOC     0.9272    0.9317    0.9294      1668
       MISC     0.7689    0.8248    0.7959       702

avg / total     0.9065    0.9209    0.9135      5648

Pretrained model download from here

BERT-LARGE

Validation Data

             precision    recall  f1-score   support

        ORG     0.9288    0.9441    0.9364      1341
        LOC     0.9754    0.9728    0.9741      1837
       MISC     0.8976    0.9219    0.9096       922
        PER     0.9762    0.9799    0.9781      1842

avg / total     0.9531    0.9606    0.9568      5942

Test Data

             precision    recall  f1-score   support

        LOC     0.9366    0.9293    0.9329      1668
        ORG     0.8881    0.9175    0.9026      1661
        PER     0.9695    0.9623    0.9659      1617
       MISC     0.7787    0.8319    0.8044       702

avg / total     0.9121    0.9232    0.9174      5648

Pretrained model download from here

Inference

from bert import Ner

model = Ner("out_base/")

output = model.predict("Steve went to Paris")

print(output)
'''
    [
        {
            "confidence": 0.9981840252876282,
            "tag": "B-PER",
            "word": "Steve"
        },
        {
            "confidence": 0.9998939037322998,
            "tag": "O",
            "word": "went"
        },
        {
            "confidence": 0.999891996383667,
            "tag": "O",
            "word": "to"
        },
        {
            "confidence": 0.9991968274116516,
            "tag": "B-LOC",
            "word": "Paris"
        }
    ]
'''

Inference C++

Pretrained and converted bert-base model download from here

Download libtorch from here

  • install cmake, tested with cmake version 3.10.2

  • unzip downloaded model and libtorch in BERT-NER

  • Compile C++ App

      cd cpp-app/
      cmake -DCMAKE_PREFIX_PATH=../libtorch

    cmake output image

    make

    make output image

  • Runing APP

       ./app ../base

    inference output image

NB: Bert-Base C++ model is split in to two parts.

  • Bert Feature extractor and NER classifier.
  • This is done because jit trace don't support input depended for loop or if conditions inside forword function of model.

Deploy REST-API

BERT NER model deployed as rest api

python api.py

API will be live at 0.0.0.0:8000 endpoint predict

cURL request

curl -X POST http://0.0.0.0:8000/predict -H 'Content-Type: application/json' -d '{ "text": "Steve went to Paris" }'

Output

{
    "result": [
        {
            "confidence": 0.9981840252876282,
            "tag": "B-PER",
            "word": "Steve"
        },
        {
            "confidence": 0.9998939037322998,
            "tag": "O",
            "word": "went"
        },
        {
            "confidence": 0.999891996383667,
            "tag": "O",
            "word": "to"
        },
        {
            "confidence": 0.9991968274116516,
            "tag": "B-LOC",
            "word": "Paris"
        }
    ]
}

cURL

curl output image

Postman

postman output image

C++ unicode support

Tensorflow version

Owner
Kamal Raj
DeepLearning | NLP | COMPUTER VISION | TF | KERAS | PYTORCH | SWIFT
Kamal Raj
Code of paper: A Recurrent Vision-and-Language BERT for Navigation

Recurrent VLN-BERT Code of the Recurrent-VLN-BERT paper: A Recurrent Vision-and-Language BERT for Navigation Yicong Hong, Qi Wu, Yuankai Qi, Cristian

YicongHong 109 Dec 21, 2022
A Flask Sentiment Analysis API, with visual implementation

The Sentiment Analysis Api was created using python flask module,it allows users to parse a text or sentence throught the (?text) arguement, then view the sentiment analysis of that sentence. It can

Ifechukwudeni Oweh 10 Jul 17, 2022
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
Knowledge Oriented Programming Language

KoPL: 面向知识的推理问答编程语言 安装 | 快速开始 | 文档 KoPL全称 Knowledge oriented Programing Language, 是一个为复杂推理问答而设计的编程语言。我们可以将自然语言问题表示为由基本函数组合而成的KoPL程序,程序运行的结果就是问题的答案。目前,

THU-KEG 62 Dec 12, 2022
A PyTorch Implementation of End-to-End Models for Speech-to-Text

speech Speech is an open-source package to build end-to-end models for automatic speech recognition. Sequence-to-sequence models with attention, Conne

Awni Hannun 647 Dec 25, 2022
This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe

Advent-of-cyber-2019-writeup This is the writeup of all the challenges from Advent-of-cyber-2019 of TryHackMe https://tryhackme.com/shivam007/badges/c

shivam danawale 5 Jul 17, 2022
Official code repository of the paper Linear Transformers Are Secretly Fast Weight Programmers.

Linear Transformers Are Secretly Fast Weight Programmers This repository contains the code accompanying the paper Linear Transformers Are Secretly Fas

Imanol Schlag 77 Dec 19, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
Applying "Load What You Need: Smaller Versions of Multilingual BERT" to LaBSE

smaller-LaBSE LaBSE(Language-agnostic BERT Sentence Embedding) is a very good method to get sentence embeddings across languages. But it is hard to fi

Jeong Ukjae 13 Sep 02, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
Idea is to build a model which will take keywords as inputs and generate sentences as outputs.

keytotext Idea is to build a model which will take keywords as inputs and generate sentences as outputs. Potential use case can include: Marketing Sea

Gagan Bhatia 364 Jan 03, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022
Label data using HuggingFace's transformers and automatically get a prediction service

Label Studio for Hugging Face's Transformers Website • Docs • Twitter • Join Slack Community Transfer learning for NLP models by annotating your textu

Heartex 135 Dec 29, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
GooAQ 🥑 : Google Answers to Google Questions!

This repository contains the code/data accompanying our recent work on long-form question answering.

AI2 112 Nov 06, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021