Face Detection & Age Gender & Expression & Recognition

Overview

FaceLib:

  • use for Detection, Facial Expression, Age & Gender Estimation and Recognition with PyTorch
  • this repository works with CPU and GPU(Cuda)

Installation

  • Clone and install with this command:
    • with pip and automatic installs everything all you need

      • pip install git+https://github.com/sajjjadayobi/FaceLib.git
    • or with cloning the repo and install required packages

      • git clone https://github.com/sajjjadayobi/FaceLib.git
  • you can see the required packages in requirements.txt

How to use:

  • the simplest way is at example_notebook.ipynb
  • for low-level usage check out the following sections
  • if you have an NVIDIA GPU don't change the device param if not use cpu

1. Face Detection: RetinaFace

  • you can use these backbone networks: Resnet50, mobilenet
    • default weights and model is mobilenet and it will be automatically download
  • for more details, you can see the documentation
  • The following example illustrates the ease of use of this package:
 from facelib import FaceDetector
 detector = FaceDetector()
 boxes, scores, landmarks = detector.detect_faces(image)
  • FaceDetection live on your webcam
   from facelib import WebcamFaceDetector
   detector = WebcamFaceDetector()
   detector.run()

WiderFace Validation Performance on a single scale When using Mobilenet for backbone

Style easy medium hard
Pytorch (same parameter with Mxnet) 88.67% 87.09% 80.99%
Pytorch (original image scale) 90.70% 88.16% 73.82%
Mxnet(original image scale) 89.58% 87.11% 69.12%

2. Face Alignment: Similar Transformation

  • always use detect_align it gives you better performance
  • you can use this module like this:
    • detect_align instead of detect_faces
 from facelib import FaceDetector
 detector = FaceDetector()
 faces, boxes, scores, landmarks = detector.detect_align(image)
  • for more details read detect_image function documentation
  • let's see a few examples
Original Aligned & Resized Original Aligned & Resized
image image image image

3. Age & Gender Estimation:

  • I used UTKFace DataSet for Age & Gender Estimation
    • default weights and model is ShufflenetFull and it will be automatically download
  • you can use this module like this:
   from facelib import FaceDetector, AgeGenderEstimator

   face_detector = FaceDetector()
   age_gender_detector = AgeGenderEstimator()

   faces, boxes, scores, landmarks = face_detector.detect_align(image)
   genders, ages = age_gender_detector.detect(faces)
   print(genders, ages)
  • AgeGenderEstimation live on your webcam
   from facelib import WebcamAgeGenderEstimator
   estimator = WebcamAgeGenderEstimator()
   estimator.run()

4. Facial Expression Recognition:

  • Facial Expression Recognition using Residual Masking Network
    • default weights and model is densnet121 and it will be automatically download
  • face size must be (224, 224), you can fix it in FaceDetector init function with face_size=(224, 224)
  from facelib import FaceDetector, EmotionDetector
 
  face_detector = FaceDetector(face_size=(224, 224))
  emotion_detector = EmotionDetector()

  faces, boxes, scores, landmarks = face_detector.detect_align(image)
  list_of_emotions, probab = emotion_detector.detect_emotion(faces)
  print(list_of_emotions)
  • EmotionDetector live on your webcam
   from facelib import WebcamEmotionDetector
   detector = WebcamEmotionDetector()
   detector.run()
  • on my Webcam 🙂

Alt Text

5. Face Recognition: InsightFace

  • This module is a reimplementation of Arcface(paper), or Insightface(Github)

Pretrained Models & Performance

  • IR-SE50
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9952 0.9962 0.9504 0.9622 0.9557 0.9107 0.9386
  • Mobilefacenet
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9918 0.9891 0.8986 0.9347 0.9402 0.866 0.9100

Prepare the Facebank (For testing over camera, video or image)

  • the faces images you want to detect it save them in this folder:

    Insightface/models/data/facebank/
              ---> person_1/
                  ---> img_1.jpg
                  ---> img_2.jpg
              ---> person_2/
                  ---> img_1.jpg
                  ---> img_2.jpg
    
  • you can save a new preson in facebank with 3 ways:

    • use add_from_webcam: it takes 4 images and saves them on facebank
       from facelib import add_from_webcam
       add_from_webcam(person_name='sajjad')
    • use add_from_folder: it takes a path with some images from just a person
       from facelib import add_from_folder
       add_from_folder(folder_path='./', person_name='sajjad')
    • or add faces manually (just face of a person not image of a person)
      • I don't suggest this

Using

  • default weights and model is mobilenet and it will be automatically download
    import cv2
    from facelib import FaceRecognizer, FaceDetector
    from facelib import update_facebank, load_facebank, special_draw, get_config
 
    conf = get_config()
    detector = FaceDetector()
    face_rec = FaceRecognizer(conf)
    face_rec.model.eval()
    
    # set True when you add someone new 
    update_facebank_for_add_new_person = False
    if update_facebank_for_add_new_person:
        targets, names = update_facebank(conf, face_rec.model, detector)
    else:
        targets, names = load_facebank(conf)

    image = cv2.imread(your_path)
    faces, boxes, scores, landmarks = detector.detect_align(image)
    results, score = face_rec.infer(conf, faces, targets)
    print(names[results.cpu()])
    for idx, bbox in enumerate(boxes):
        special_draw(image, bbox, landmarks[idx], names[results[idx]+1], score[idx])
  • Face Recognition live on your webcam
   from facelib import WebcamVerify
   verifier = WebcamVerify(update=True)
   verifier.run()
  • example of run this code:

image

Reference:

Owner
Sajjad Ayobi
Data Science Lover, a Little Geek
Sajjad Ayobi
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
Geometric Vector Perceptrons --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Implementation of equivariant GVP-GNNs as described in Learning from Protein Structure with Geometric Vector Perceptrons b

Dror Lab 142 Dec 29, 2022
Anagram Generator in Python

Anagrams Generator This is a program for computing multiword anagrams. It makes no effort to come up with sentences that make sense; it only finds ana

Day Fundora 5 Nov 17, 2022
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
This repository contains code for the paper "Decoupling Representation and Classifier for Long-Tailed Recognition", published at ICLR 2020

Classifier-Balancing This repository contains code for the paper: Decoupling Representation and Classifier for Long-Tailed Recognition Bingyi Kang, Sa

Facebook Research 820 Dec 26, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Implementation of various Vision Transformers I found interesting

Implementation of various Vision Transformers I found interesting

Kim Seonghyeon 78 Dec 06, 2022
Official implementation of VQ-Diffusion

Official implementation of VQ-Diffusion: Vector Quantized Diffusion Model for Text-to-Image Synthesis

Microsoft 592 Jan 03, 2023
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022