Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Overview

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Task

Training huge unsupervised deep neural networks yields to strong progress in the field of Natural Language Processing (NLP). Using these extensively pre-trained networks for particular NLP applications is the current state-of-the-art approach. In this project, we approach the task of ranking possible clarifying questions for a given query. We fine-tuned a pre-trained BERT model to rank the possible clarifying questions in a classification manner. The achieved model scores a top-5 accuracy of 0.4565 on the provided benchmark dataset.

Installation

This project was originally developed with Python 3.8, PyTorch 1.7, and CUDA 11.0. The training requires one NVIDIA GeForce RTX 1080 (11GB memory).

  • Create conda environment:
conda create --name dl4nlp
source activate dl4nlp
  • Install the dependencies:
pip install -r requirements.txt

Run

We use a pretrained BERT-Base by Hugging Face and fine-tune it on the given training dataset. To run training, please use the following command:

python main.py --train

For evaluation on the test set, please use the following command:

python main.py --test

Arguments for training and/or testing:

  • --train: Run training on training dataset. Default: True
  • --val: Run evaluation during training on validation dataset. Default: True
  • --test: Run evaluation on test dataset. Default: True
  • --cuda-devices: Set GPU index Default: 0
  • --cpu: Run everything on CPU. Default: False
  • --data-parallel: Use DataParallel. Default: False
  • --data-root: Path to dataset folder. Default: data
  • --train-file-name: Name of training file name in data-root. Default: training.tsv
  • --test-file-name: Name of test file name in data-root. Default: test_set.tsv
  • --question-bank-name: Name of question bank file name in data-root. Default: question_bank.tsv
  • --checkpoints-root: Path to checkpoints folder. Default: checkpoints
  • --checkpoint-name: File name of checkpoint in checkpoints-root to start training or use for testing. Default: None
  • --runs-root: Path to output runs folder for tensorboard. Default: runs
  • --txt-root: Path to output txt folder for evaluation results. Default: txt
  • --lr: Learning rate. Default: 1e-5
  • --betas: Betas for optimization. Default: (0.9, 0.999)
  • --weight-decay: Weight decay. Default: 1e-2
  • --val-start: Set at which epoch to start validation. Default: 0
  • --val-step: Set at which epoch rate to valide. Default: 1
  • --val-split: Use subset of training dataset for validation. Default: 0.005
  • --num-epochs: Number of epochs for training. Default: 10
  • --batch-size: Samples per batch. Default: 32
  • --num-workers: Number of workers. Default: 4
  • --top-k-accuracy: Evaluation metric with flexible top-k-accuracy. Default: 50
  • --true-label: True label in dataset. Default: 1
  • --false-label: False label in dataset. Default: 0

Example output

User query:

Tell me about Computers

Propagated clarifying questions:

  1. do you like using computers
  2. do you want to know how to do computer programming
  3. do you want to see some closeup of a turbine
  4. are you looking for information on different computer programming languages
  5. are you referring to a software
Modification of convolutional neural net "UNET" for image segmentation in Keras framework

ZF_UNET_224 Pretrained Model Modification of convolutional neural net "UNET" for image segmentation in Keras framework Requirements Python 3.*, Keras

209 Nov 02, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
[NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature"

IP-IRM [NeurIPS 2021] The PyTorch implementation of paper "Self-Supervised Learning Disentangled Group Representation as Feature". Codes will be relea

Wang Tan 67 Dec 24, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
GAN-STEM-Conv2MultiSlice - Exploring Generative Adversarial Networks for Image-to-Image Translation in STEM Simulation

GAN-STEM-Conv2MultiSlice GAN method to help covert lower resolution STEM images generated by convolution methods to higher resolution STEM images gene

UW-Madison Computational Materials Group 2 Feb 10, 2021
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
ADB-IP-ROTATION - Use your mobile phone to gain a temporary IP address using ADB and data tethering

ADB IP ROTATE This an Python script based on Android Debug Bridge (adb) shell sc

Dor Bismuth 2 Jul 12, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
A set of tools for converting a darknet dataset to COCO format working with YOLOX

darknet格式数据→COCO darknet训练数据目录结构(详情参见dataset/darknet): darknet ├── class.names ├── gen_config.data ├── gen_train.txt ├── gen_valid.txt └── images

RapidAI-NG 148 Jan 03, 2023
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022