Python package for multiple object tracking research with focus on laboratory animals tracking.

Related tags

Deep Learningmotutils
Overview

Build Status

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking.

Features

  • loads:
  • saves: MOTChallenge CSV
  • Mot, BboxMot and PoseMot classes backed by xarray dataset with frame and id coordinates
  • export to Pandas DataFrame
  • oracle detector: fake all knowing detector based on ground truth with configurable inaccuracies
  • different classes of tracked objects: point, bounding box, pose
  • interpolation of missing positions
  • find mapping between MOT results and ground truth
  • visualization:
    • tracked positions / objects overlaid on a video
    • montage of multiple videos with results and/or ground truth
  • cli
    • visualization
    • evaluation ()
    • mot format conversion

visualization montage

Video comparison of multiple tracking methods and the ground truth.

Installation

pip install git+https://github.com/smidm/motutils

Usage

$ motutils --help
Usage: motutils [OPTIONS] COMMAND [ARGS]...

Options:
--load-mot FILENAME             load a MOT challenge csv file(s)
--load-gt FILENAME              load ground truth from a MOT challenge csv
file
--load-idtracker FILENAME       load IdTracker trajectories (e.g.,
trajectories.txt)
--load-idtrackerai FILENAME     load idtracker.ai trajectories (e.g.,
trajectories_wo_gaps.npy)
--load-sleap-analysis FILENAME  load SLEAP analysis trajectories (exported
from sleap-label File -> Export Analysis
HDF5)
--load-toxtrac FILENAME         load ToxTracker trajectories (e.g.,
Tracking_0.txt)
--toxtrac-topleft-xy 
   
    ...
position of the arena top left corner, see
first tuple in the Arena line in Stats_1.txt
--help                          Show this message and exit.

Commands:
convert    Convert any format to MOT Challenge format.
eval       Evaluate a single MOT file against the ground truth.
visualize  Visualize MOT file(s) overlaid on a video.

   
$ motutils convert --help

Usage: motutils convert [OPTIONS] OUTPUT_MOT

  Convert any format to MOT Challenge format.

$ motutils eval --help

Usage: motutils eval [OPTIONS]

  Evaluate a single MOT file against the ground truth.

Options:
  --write-eval FILENAME  write evaluation results as a CSV file
  --keypoint INTEGER     keypoint to use when evaluating pose MOT results
                         against point ground truth
$ motutils visualize --help

Usage: motutils visualize [OPTIONS] VIDEO_IN VIDEO_OUT
                          [SOURCE_DISPLAY_NAME]...

  Visualize MOT file(s) overlaid on a video.

Options:
  --limit-duration INTEGER  visualization duration limit in s
  --help                    Show this message and exit.

Python API Quickstart

>> mot.ds Dimensions: (frame: 4500, id: 5) Coordinates: * frame (frame) int64 0 1 2 3 4 5 6 ... 4494 4495 4496 4497 4498 4499 * id (id) int64 1 2 3 4 5 Data variables: x (frame, id) float64 434.5 277.7 179.2 ... 185.3 138.6 420.2 y (frame, id) float64 279.0 293.6 407.9 ... 393.3 387.2 294.7 width (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan height (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan confidence (frame, id) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 >>> mot.num_ids() 5 >>> mot.count_missing() 0 >>> mot.get_object(frame=1, obj_id=2) Dimensions: () Coordinates: frame int64 1 id int64 2 Data variables: x float64 278.2 y float64 293.7 width float64 nan height float64 nan confidence float64 1.0 >>> mot.match_xy(frame=1, xy=(300, 300), maximal_match_distance=40) Dimensions: () Coordinates: frame int64 1 id int64 2 Data variables: x float64 278.2 y float64 293.7 width float64 nan height float64 nan confidence float64 1.0 >>> mot.to_dataframe() frame id x y width height confidence 0 1 1 434.5 279.0 -1.0 -1.0 1.0 1 1 2 277.7 293.6 -1.0 -1.0 1.0 2 1 3 179.2 407.9 -1.0 -1.0 1.0 3 1 4 180.0 430.0 -1.0 -1.0 1.0 4 1 5 155.0 397.0 -1.0 -1.0 1.0 ... .. ... ... ... ... ... 22495 4500 1 90.3 341.9 -1.0 -1.0 1.0 22496 4500 2 187.9 431.9 -1.0 -1.0 1.0 22497 4500 3 185.3 393.3 -1.0 -1.0 1.0 22498 4500 4 138.6 387.2 -1.0 -1.0 1.0 22499 4500 5 420.2 294.7 -1.0 -1.0 1.0 [22500 rows x 7 columns]">
>>> from motutils import Mot
>>> mot = Mot("tests/data/Sowbug3_cut.csv")

>>> mot.ds
<xarray.Dataset>
Dimensions:     (frame: 4500, id: 5)
Coordinates:
  * frame       (frame) int64 0 1 2 3 4 5 6 ... 4494 4495 4496 4497 4498 4499
  * id          (id) int64 1 2 3 4 5
Data variables:
    x           (frame, id) float64 434.5 277.7 179.2 ... 185.3 138.6 420.2
    y           (frame, id) float64 279.0 293.6 407.9 ... 393.3 387.2 294.7
    width       (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan
    height      (frame, id) float64 nan nan nan nan nan ... nan nan nan nan nan
    confidence  (frame, id) float64 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0

>>> mot.num_ids()
5

>>> mot.count_missing()
0

>>> mot.get_object(frame=1, obj_id=2)
<xarray.Dataset>
Dimensions:     ()
Coordinates:
    frame       int64 1
    id          int64 2
Data variables:
    x           float64 278.2
    y           float64 293.7
    width       float64 nan
    height      float64 nan
    confidence  float64 1.0

>>> mot.match_xy(frame=1, xy=(300, 300), maximal_match_distance=40)
<xarray.Dataset>
Dimensions:     ()
Coordinates:
    frame       int64 1
    id          int64 2
Data variables:
    x           float64 278.2
    y           float64 293.7
    width       float64 nan
    height      float64 nan
    confidence  float64 1.0

>>> mot.to_dataframe()
       frame  id      x      y  width  height  confidence
0          1   1  434.5  279.0   -1.0    -1.0         1.0
1          1   2  277.7  293.6   -1.0    -1.0         1.0
2          1   3  179.2  407.9   -1.0    -1.0         1.0
3          1   4  180.0  430.0   -1.0    -1.0         1.0
4          1   5  155.0  397.0   -1.0    -1.0         1.0
      ...  ..    ...    ...    ...     ...         ...
22495   4500   1   90.3  341.9   -1.0    -1.0         1.0
22496   4500   2  187.9  431.9   -1.0    -1.0         1.0
22497   4500   3  185.3  393.3   -1.0    -1.0         1.0
22498   4500   4  138.6  387.2   -1.0    -1.0         1.0
22499   4500   5  420.2  294.7   -1.0    -1.0         1.0
[22500 rows x 7 columns]

Documentation

See the quickstart and tests for now.

Write me if you would like to use the package, but the lack of documentation is hindering you. You can easily reorder my priorities on this simply just by letting me know that there is an interest.

Owner
Matěj Šmíd
Matěj Šmíd
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
Code for approximate graph reduction techniques for cardinality-based DSFM, from paper

SparseCard Code for approximate graph reduction techniques for cardinality-based DSFM, from paper "Approximate Decomposable Submodular Function Minimi

Nate Veldt 1 Nov 25, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
This project contains an implemented version of Face Detection using OpenCV and Mediapipe. This is a code snippet and can be used in projects.

Live-Face-Detection Project Description: In this project, we will be using the live video feed from the camera to detect Faces. It will also detect so

Hassan Shahzad 3 Oct 02, 2021
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Convert Python 3 code to CUDA code.

Py2CUDA Convert python code to CUDA. Usage To convert a python file say named py_file.py to CUDA, run python generate_cuda.py --file py_file.py --arch

Yuval Rosen 3 Jul 14, 2021
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Python library for tracking human heads with FLAME (a 3D morphable head model)

Video Head Tracker 3D tracking library for human heads based on FLAME (a 3D morphable head model). The tracking algorithm is inspired by face2face. It

61 Dec 25, 2022
code and models for "Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation"

Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation This repository contains code and models for the method described in: Golnaz

55 Jun 18, 2022
Lightweight Python library for adding real-time object tracking to any detector.

Norfair is a customizable lightweight Python library for real-time 2D object tracking. Using Norfair, you can add tracking capabilities to any detecto

Tryolabs 1.7k Jan 05, 2023
NALSM: Neuron-Astrocyte Liquid State Machine

NALSM: Neuron-Astrocyte Liquid State Machine This package is a Tensorflow implementation of the Neuron-Astrocyte Liquid State Machine (NALSM) that int

Computational Brain Lab 4 Nov 28, 2022
Cookiecutter PyTorch Lightning

Cookiecutter PyTorch Lightning Instructions # install cookiecutter pip install cookiecutter

Mazen 8 Nov 06, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
Codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense neural networks

DominoSearch This is repository for codes and models of NeurIPS2021 paper - DominoSearch: Find layer-wise fine-grained N:M sparse schemes from dense n

11 Sep 10, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022