Chatbot in 200 lines of code using TensorLayer

Overview

Seq2Seq Chatbot

This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code:

Prerequisites

Model


Training

python3 main.py

Results

Query > happy birthday have a nice day
 > thank you so much
 > thank babe
 > thank bro
 > thanks so much
 > thank babe i appreciate it
Query > donald trump won last nights presidential debate according to snap online polls
 > i dont know what the fuck is that
 > i think he was a racist
 > he is not a racist
 > he is a liar
 > trump needs to be president
Comments
  • [WIP] Fix error in PR #16 Inference mode and TF compatibility

    [WIP] Fix error in PR #16 Inference mode and TF compatibility

    Hey @pskrunner14

    Thanks for the great PR! We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again? You can create a PR from your fork again or directly modify from here.

    Cheers, Luo

    opened by luomai 6
  • No module named 'tensorlayer.models.seq2seq'

    No module named 'tensorlayer.models.seq2seq'

    Can someone share with me how to resolve this error? Thanks.

    Traceback (most recent call last): File "D:\ChatBot\seq2seq-chatbot-master\main.py", line 11, in from tensorlayer.models.seq2seq import Seq2seq ModuleNotFoundError: No module named 'tensorlayer.models.seq2seq'

    opened by geongm 5
  • Change seq2seq import names

    Change seq2seq import names

    Had the #37 problem. It looks like on in current version of tensorlayer import names changed.

    These imports work with tensorflow 2.0.0-beta1 tensorlayer 2.1.0

    opened by egens 4
  • TL2.0

    TL2.0

    Update model compatible with TensorLayer2.0. Rewrite the loss. cross_entropy_seq_with_mask and cross_entropy_seq. Need to run to see if it converges and produce desirable results

    opened by ArnoldLIULJ 3
  • Inference mode and TF compatibility

    Inference mode and TF compatibility

    • Moved Inference code to a function.
    • Added optional arguments including running script in inference mode [usage python main.py --help].
    • Added tqdm progress bar for info while training.
    • Made the code compatible with TF v1.10.0 and TL v1.10.1.
    • Changed tf.contrib.rnn.BasicLSTMCell to tf.nn.rnn_cell.LSTMCell since the former is deprecated.
    • Moved session config to global scope.
    • Refactored code into relevant functions and reordered them so that the higher-level ones appear earlier in the code.
    • Renamed script to main.py for ease of use.
    • Updated README to add training and inference usage commands.
    • Added requirements.txt file.
    • Changed n.npz to model.npz since it is more standard.

    Note: Fixes #12 and #15

    opened by pskrunner14 3
  • Using the Chatbot

    Using the Chatbot

    Hi there,

    I trained the data for a few days and now the samples are returning good results to the predefined "Happy Birthday" and "Trump" requests.

    Great job by you. Thanks so far.

    Do you already have a small python program for using the chatbot? If I write a message, the chatbot should return a single answer.

    Thanks Chris

    opened by cpro90 3
  • Training is taking too much time

    Training is taking too much time

    Training on CPU is taking too much time, so do you have any estimate how much time it will take? I have executed this 12 hours ago and now i am on just "Epoch[2/50] step:[600/2852] loss:5.684645 took:9.62770s". Can you please help me to boost this training.

    opened by aqeellegalinc 3
  • Inference mode and TF compatibility (#16)

    Inference mode and TF compatibility (#16)

    @pskrunner14

    We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again?

    opened by luomai 2
  • Fixes TL global variables initializer deprecated issue and Code readability

    Fixes TL global variables initializer deprecated issue and Code readability

    Fixed TensorLayer initialize global vars deprecated issue #13, changed learning rate to 0.001 for faster convergence, improved code readability and removed redundant comments and code

    opened by pskrunner14 2
  • Can't import data

    Can't import data

    ModuleNotFoundError Traceback (most recent call last) in () 8 9 ###============= prepare data ---> 10 from data.twitter import data 11 metadata, idx_q, idx_a = data.load_data(PATH='data/twitter/') # Twitter 12 # from data.cornell_corpus import data

    ModuleNotFoundError: No module named 'data.twitter'

    opened by georgexli 2
  • No module named twitter

    No module named twitter

    File "main_simple_seq2seq.py", line 18, in from data.twitter import data ImportError: No module named twitter

    Did I miss some files? Can you please help me?Many thanks^ o^

    opened by MProtoss 1
  • ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    I am trying to write code for Chat Box, but encountering the error "ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package" when trying to execute "from data.twitter import data".

    Please suggest , how to resolve the issue?

    note: I am working on following environment: Python is 3.6 V Tensorflow : 2.0 Tensorlayer: 2.2 python-twitter

    opened by mhmitalihalder 0
  • How could I get the

    How could I get the "thought vector" using TensorLayer?

    I am using the seq2seq model as an autoencoder. Given a test paragraph, I'd like to get the thought vector (using the terminology in the figure of README.md).

    opened by munichong 0
Releases(0.1)
Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Official implementation of "Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets" (CVPR2021)

Towards Good Practices for Efficiently Annotating Large-Scale Image Classification Datasets This is the official implementation of "Towards Good Pract

Sanja Fidler's Lab 52 Nov 22, 2022
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
DockStream: A Docking Wrapper to Enhance De Novo Molecular Design

DockStream Description DockStream is a docking wrapper providing access to a collection of ligand embedders and docking backends. Docking execution an

AstraZeneca - Molecular AI 72 Jan 02, 2023
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Pytorch Implementation of rpautrat/SuperPoint

SuperPoint-Pytorch (A Pure Pytorch Implementation) SuperPoint: Self-Supervised Interest Point Detection and Description Thanks This work is based on:

76 Dec 27, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
In the case of your data having only 1 channel while want to use timm models

timm_custom Description In the case of your data having only 1 channel while want to use timm models (with or without pretrained weights), run the fol

2 Nov 26, 2021
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Official Implementation of Neural Splines

Neural Splines: Fitting 3D Surfaces with Inifinitely-Wide Neural Networks This repository contains the official implementation of the CVPR 2021 (Oral)

Francis Williams 56 Nov 29, 2022
In this project, we develop a face recognize platform based on MTCNN object-detection netcwork and FaceNet self-supervised network.

模式识别大作业——人脸检测与识别平台 本项目是一个简易的人脸检测识别平台,提供了人脸信息录入和人脸识别的功能。前端采用 html+css+js,后端采用 pytorch,

Xuhua Huang 5 Aug 02, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022