DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

Overview

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias, Petros Daras.

Introduction

DeepMoCap constitutes a low-cost, marker-based optical motion capture method that consumes multiple spatio-temporally aligned infrared-depth sensor streams using retro-reflective straps and patches (reflectors).

DeepMoCap explores motion capture by automatically localizing and labeling reflectors on depth images and, subsequently, on 3D space. Introducing a non-parametric representation to encode the temporal correlation among pairs of colorized depthmaps and 3D optical flow frames, a multi-stage Fully Convolutional Network (FCN) architecture is proposed to jointly learn reflector locations and their temporal dependency among sequential frames. The extracted reflector 2D locations are spatially mapped in 3D space, resulting in robust optical data extraction. To this end, the subject's motion is efficiently captured by applying a template-based fitting technique.

Teaser?

Teaser?

This project is licensed under the terms of the license.

Contents

  1. Testing
  2. Datasets
  3. Citation

Testing

For testing the FCN model, please visit "testing/" enabling the 3D optical data extraction from colorized depth and 3D optical flow input. The data should be appropriately formed and the DeepMoCap FCN model should be placed to "testing/model/keras".

The proposed FCN is evaluated on the DMC2.5D dataset measuring mean Average Precision (mAP) for the entire set, based on Percentage of Correct Keypoints (PCK) thresholds (a = 0.05). The proposed method outperforms the competitive methods as shown in the table below.

Method Total Total (without end-reflectors)
CPM 92.16% 95.27%
CPM+PAFs 92.79% 95.61%
CPM+PAFs + 3D OF 92.84% 95.67%
Proposed 93.73% 96.77%

Logo

Supplementaty material (video)

Teaser?

Datasets

Two datasets have been created and made publicly available for evaluation purposes; one comprising multi-view depth and 3D optical flow annotated images (DMC2.5D), and a second, consisting of spatio-temporally aligned multi-view depth images along with skeleton, inertial and ground truth MoCap data (DMC3D).

DMC2.5D

The DMC2.5D Dataset was captured in order to train and test the DeepMoCap FCN. It comprises pairs per view of:

The samples were randomly selected from 8 subjects. More specifically, 25K single-view pair samples were annotated with over 300K total keypoints (i.e., reflector 2D locations of current and previous frames on the image), trying to cover a variety of poses and movements in the scene. 20K, 3K and 2K samples were used for training, validation and testing the FCN model, respectively. The annotation was semi-automatically realized by applying image processing and 3D vision techniques, while the dataset was manually refined using the 2D-reflectorset-annotator.

Teaser?

To get the DMC2.5D dataset, please contact the owner of the repository via github or email ([email protected]).

DMC3D

Teaser?

The DMC3D dataset consists of multi-view depth and skeleton data as well as inertial and ground truth motion capture data. Specifically, 3 Kinect for Xbox One sensors were used to capture the IR-D and Kinect skeleton data along with 9 XSens MT inertial measurement units (IMU) to enable the comparison between the proposed method and inertial MoCap approaches. Further, a PhaseSpace Impulse X2 solution was used to capture ground truth MoCap data. The preparation of the DMC3D dataset required the spatio-temporal alignment of the modalities (Kinect, PhaseSpace, XSens MTs). The setup used for the Kinect recordings provides spatio-temporally aligned IR-D and skeleton frames.

Exercise # of repetitions # of frames Type
Walking on the spot 10-20 200-300 Free
Single arm raise 10-20 300-500 Bilateral
Elbow flexion 10-20 300-500 Bilateral
Knee flexion 10-20 300-500 Bilateral
Closing arms above head 6-12 200-300 Free
Side steps 6-12 300-500 Bilateral
Jumping jack 6-12 200-300 Free
Butt kicks left-right 6-12 300-500 Bilateral
Forward lunge left-right 4-10 300-500 Bilateral
Classic squat 6-12 200-300 Free
Side step + knee-elbow 6-12 300-500 Bilateral
Side reaches 6-12 300-500 Bilateral
Side jumps 6-12 300-500 Bilateral
Alternate side reaches 6-12 300-500 Bilateral
Kick-box kicking 2-6 200-300 Free

The annotation tool for the spatio-temporally alignment of the 3D data will be publicly available soon.

To get the DMC3D dataset, please contact the owner of the repository via github or email ([email protected]).

Citation

This paper has been published in MDPI Sensors, Depth Sensors and 3D Vision Special Issue [PDF]

Please cite the paper in your publications if it helps your research:


@article{chatzitofis2019deepmocap,
  title={DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors},
  author={Chatzitofis, Anargyros and Zarpalas, Dimitrios and Kollias, Stefanos and Daras, Petros},
  journal={Sensors},
  volume={19},
  number={2},
  pages={282},
  year={2019},
  publisher={Multidisciplinary Digital Publishing Institute}
}
Connecting Java/ImgLib2 + Python/NumPy

imglyb imglyb aims at connecting two worlds that have been seperated for too long: Python with numpy Java with ImgLib2 imglyb uses jpype to access num

ImgLib2 29 Dec 21, 2022
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
This repo is a PyTorch implementation for Paper "Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds"

Unsupervised Learning for Cuboid Shape Abstraction via Joint Segmentation from Point Clouds This repository is a PyTorch implementation for paper: Uns

Kaizhi Yang 42 Dec 09, 2022
Code for our paper "Multi-scale Guided Attention for Medical Image Segmentation"

Medical Image Segmentation with Guided Attention This repository contains the code of our paper: "'Multi-scale self-guided attention for medical image

Ashish Sinha 394 Dec 28, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Official implementation of Densely connected normalizing flows

Densely connected normalizing flows This repository is the official implementation of NeurIPS 2021 paper Densely connected normalizing flows. Poster a

Matej Grcić 31 Dec 12, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
Benchmark for Answering Existential First Order Queries with Single Free Variable

EFO-1-QA Benchmark for First Order Query Estimation on Knowledge Graphs This repository contains an entire pipeline for the EFO-1-QA benchmark. EFO-1

HKUST-KnowComp 14 Oct 24, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Ren Yurui 261 Jan 09, 2023
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022