DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

Overview

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias, Petros Daras.

Introduction

DeepMoCap constitutes a low-cost, marker-based optical motion capture method that consumes multiple spatio-temporally aligned infrared-depth sensor streams using retro-reflective straps and patches (reflectors).

DeepMoCap explores motion capture by automatically localizing and labeling reflectors on depth images and, subsequently, on 3D space. Introducing a non-parametric representation to encode the temporal correlation among pairs of colorized depthmaps and 3D optical flow frames, a multi-stage Fully Convolutional Network (FCN) architecture is proposed to jointly learn reflector locations and their temporal dependency among sequential frames. The extracted reflector 2D locations are spatially mapped in 3D space, resulting in robust optical data extraction. To this end, the subject's motion is efficiently captured by applying a template-based fitting technique.

Teaser?

Teaser?

This project is licensed under the terms of the license.

Contents

  1. Testing
  2. Datasets
  3. Citation

Testing

For testing the FCN model, please visit "testing/" enabling the 3D optical data extraction from colorized depth and 3D optical flow input. The data should be appropriately formed and the DeepMoCap FCN model should be placed to "testing/model/keras".

The proposed FCN is evaluated on the DMC2.5D dataset measuring mean Average Precision (mAP) for the entire set, based on Percentage of Correct Keypoints (PCK) thresholds (a = 0.05). The proposed method outperforms the competitive methods as shown in the table below.

Method Total Total (without end-reflectors)
CPM 92.16% 95.27%
CPM+PAFs 92.79% 95.61%
CPM+PAFs + 3D OF 92.84% 95.67%
Proposed 93.73% 96.77%

Logo

Supplementaty material (video)

Teaser?

Datasets

Two datasets have been created and made publicly available for evaluation purposes; one comprising multi-view depth and 3D optical flow annotated images (DMC2.5D), and a second, consisting of spatio-temporally aligned multi-view depth images along with skeleton, inertial and ground truth MoCap data (DMC3D).

DMC2.5D

The DMC2.5D Dataset was captured in order to train and test the DeepMoCap FCN. It comprises pairs per view of:

The samples were randomly selected from 8 subjects. More specifically, 25K single-view pair samples were annotated with over 300K total keypoints (i.e., reflector 2D locations of current and previous frames on the image), trying to cover a variety of poses and movements in the scene. 20K, 3K and 2K samples were used for training, validation and testing the FCN model, respectively. The annotation was semi-automatically realized by applying image processing and 3D vision techniques, while the dataset was manually refined using the 2D-reflectorset-annotator.

Teaser?

To get the DMC2.5D dataset, please contact the owner of the repository via github or email ([email protected]).

DMC3D

Teaser?

The DMC3D dataset consists of multi-view depth and skeleton data as well as inertial and ground truth motion capture data. Specifically, 3 Kinect for Xbox One sensors were used to capture the IR-D and Kinect skeleton data along with 9 XSens MT inertial measurement units (IMU) to enable the comparison between the proposed method and inertial MoCap approaches. Further, a PhaseSpace Impulse X2 solution was used to capture ground truth MoCap data. The preparation of the DMC3D dataset required the spatio-temporal alignment of the modalities (Kinect, PhaseSpace, XSens MTs). The setup used for the Kinect recordings provides spatio-temporally aligned IR-D and skeleton frames.

Exercise # of repetitions # of frames Type
Walking on the spot 10-20 200-300 Free
Single arm raise 10-20 300-500 Bilateral
Elbow flexion 10-20 300-500 Bilateral
Knee flexion 10-20 300-500 Bilateral
Closing arms above head 6-12 200-300 Free
Side steps 6-12 300-500 Bilateral
Jumping jack 6-12 200-300 Free
Butt kicks left-right 6-12 300-500 Bilateral
Forward lunge left-right 4-10 300-500 Bilateral
Classic squat 6-12 200-300 Free
Side step + knee-elbow 6-12 300-500 Bilateral
Side reaches 6-12 300-500 Bilateral
Side jumps 6-12 300-500 Bilateral
Alternate side reaches 6-12 300-500 Bilateral
Kick-box kicking 2-6 200-300 Free

The annotation tool for the spatio-temporally alignment of the 3D data will be publicly available soon.

To get the DMC3D dataset, please contact the owner of the repository via github or email ([email protected]).

Citation

This paper has been published in MDPI Sensors, Depth Sensors and 3D Vision Special Issue [PDF]

Please cite the paper in your publications if it helps your research:


@article{chatzitofis2019deepmocap,
  title={DeepMoCap: Deep Optical Motion Capture Using Multiple Depth Sensors and Retro-Reflectors},
  author={Chatzitofis, Anargyros and Zarpalas, Dimitrios and Kollias, Stefanos and Daras, Petros},
  journal={Sensors},
  volume={19},
  number={2},
  pages={282},
  year={2019},
  publisher={Multidisciplinary Digital Publishing Institute}
}
PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Incomplete easy-to-use math solver and PDF generator.

Math Expert Let me do your work Preview preview.mp4 Introduction Math Expert is our (@salastro, @younis-tarek, @marawn-mogeb) math high school graduat

SalahDin Ahmed 22 Jul 11, 2022
Rename Images with Auto Generated Neural Image Captions

Recaption Images with Generated Neural Image Caption Example Usage: Commandline: Recaption all images from folder /home/feng/Downloads/images to folde

feng wang 3 May 01, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Özlem Taşkın 0 Feb 23, 2022
[CVPR 2021] "The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models" Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Michael Carbin, Zhangyang Wang

The Lottery Tickets Hypothesis for Supervised and Self-supervised Pre-training in Computer Vision Models Codes for this paper The Lottery Tickets Hypo

VITA 59 Dec 28, 2022
exponential adaptive pooling for PyTorch

AdaPool: Exponential Adaptive Pooling for Information-Retaining Downsampling Abstract Pooling layers are essential building blocks of Convolutional Ne

Alexandros Stergiou 55 Jan 04, 2023
Final project for machine learning (CSC 590). Detection of hepatitis C and progression through blood samples.

Hepatitis C Blood Based Detection Final project for machine learning (CSC 590). Dataset from Kaggle. Using data from previous hepatitis C blood panels

Jennefer Maldonado 1 Dec 28, 2021
Sparse Physics-based and Interpretable Neural Networks

Sparse Physics-based and Interpretable Neural Networks for PDEs This repository contains the code and manuscript for research done on Sparse Physics-b

28 Jan 03, 2023
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
Tutorial in Python targeted at Epidemiologists. Will discuss the basics of analysis in Python 3

Python-for-Epidemiologists This repository is an introduction to epidemiology analyses in Python. Additionally, the tutorials for my library zEpid are

Paul Zivich 120 Nov 17, 2022
The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

Facebook Research 1k Dec 31, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
A python comtrade load library accelerated by go

Comtrade-GRPC Code for python used is mainly from dparrini/python-comtrade. Just patch the code in BinaryDatReader.parse for parsing a little more eff

Bo 1 Dec 27, 2021
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
IndoNLI: A Natural Language Inference Dataset for Indonesian

IndoNLI: A Natural Language Inference Dataset for Indonesian This is a repository for data and code accompanying our EMNLP 2021 paper "IndoNLI: A Natu

15 Feb 10, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022