MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

Related tags

Data AnalysisMead
Overview

MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation [ECCV2020]

by Kaisiyuan Wang, Qianyi Wu, Linsen Song, Zhuoqian Yang, Wayne Wu, Chen Qian, Ran He, Yu Qiao, Chen Change Loy.

Introduction

This repository is for our ECCV2020 paper MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation.

Multi-view Emotional Audio-visual Dataset

To cope with the challenge of realistic and natural emotional talking face genertaion, we build the Multi-view Emotional Audio-visual Dataset (MEAD) which is a talking-face video corpus featuring 60 actors and actresses talking with 8 different emotions at 3 different intensity levels. High-quality audio-visual clips are captured at 7 different view angles in a strictly-controlled environment. Together with the dataset, we also release an emotional talking-face generation baseline which enables the manipulation of both emotion and its intensity. For more specific information about the dataset, please refer to here.

image

Installation

This repository is based on Pytorch, so please follow the official instructions in here. The code is tested under pytorch1.0 and Python 3.6 on Ubuntu 16.04.

Usage

Training set & Testing set Split

Please refer to the Section 6 "Speech Corpus of Mead" in the supplementary material. The speech corpora are basically divided into 3 parts, (i.e., common, generic, and emotion-related). For each intensity level, we directly use the last 10 sentences of neutral category and the last 6 sentences of the other seven emotion categories as the testing set. Note that all the sentences in the testing set come from the "emotion-related" part. Meanwhile if you are trying to manipulate the emotion category, you can use all the 40 sentences of neutral category as the input samples.

Training

  1. Download the dataset from here. We package the audio-visual data of each actor in a single folder named after "MXXX" or "WXXX", where "M" and "W" indicate actor and actress, respectively.
  2. As Mead requires different modules to achieve different functions, thus we seperate the training for Mead into three stages. In each stage, the corresponding configuration (.yaml file) should be set up accordingly, and used as below:

Stage 1: Audio-to-Landmarks Module

cd Audio2Landmark
python train.py --config config.yaml

Stage 2: Neutral-to-Emotion Transformer

cd Neutral2Emotion
python train.py --config config.yaml

Stage 3: Refinement Network

cd Refinement
python train.py --config config.yaml

Testing

  1. First, download the pretrained models and put them in models folder.
  2. Second, download the demo audio data.
  3. Run the following command to generate a talking sequence with a specific emotion
cd Refinement
python demo.py --config config_demo.yaml

You can try different emotions by replacing the number with other integers from 0~7.

  • 0:angry
  • 1:disgust
  • 2:contempt
  • 3:fear
  • 4:happy
  • 5:sad
  • 6:surprised
  • 7:neutral

In addition, you can also try compound emotion by setting up two different emotions at the same time.

image

  1. The results are stored in outputs folder.

Citation

If you find this code useful for your research, please cite our paper:

@inproceedings{kaisiyuan2020mead,
 author = {Wang, Kaisiyuan and Wu, Qianyi and Song, Linsen and Yang, Zhuoqian and Wu, Wayne and Qian, Chen and He, Ran and Qiao, Yu and Loy, Chen Change},
 title = {MEAD: A Large-scale Audio-visual Dataset for Emotional Talking-face Generation},
 booktitle = {ECCV},
 month = Augest,
 year = {2020}
} 
Synthetic Data Generation for tabular, relational and time series data.

An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github

The Synthetic Data Vault Project 1.2k Jan 07, 2023
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022
Python Implementation of Scalable In-Memory Updatable Bitmap Indexing

PyUpBit CS490 Large Scale Data Analytics — Implementation of Updatable Compressed Bitmap Indexing Paper Table of Contents About The Project Usage Cont

Hyeong Kyun (Daniel) Park 1 Jun 28, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
Binance Kline Data With Python

Binance Kline Data by seunghan(gingerthorp) reference https://github.com/binance/binance-public-data/ All intervals are supported: 1m, 3m, 5m, 15m, 30

shquant 5 Jul 13, 2022
Exploratory Data Analysis for Employee Retention Dataset

Exploratory Data Analysis for Employee Retention Dataset Employee turn-over is a very costly problem for companies. The cost of replacing an employee

kana sudheer reddy 2 Oct 01, 2021
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
This repository contains some analysis of possible nerdle answers

Nerdle Analysis https://nerdlegame.com/ This repository contains some analysis of possible nerdle answers. Here's a quick overview: nerdle.py contains

0 Dec 16, 2022
Port of dplyr and other related R packages in python, using pipda.

Unlike other similar packages in python that just mimic the piping syntax, datar follows the API designs from the original packages as much as possible, and is tested thoroughly with the cases from t

179 Dec 21, 2022
Hg002-qc-snakemake - HG002 QC Snakemake

HG002 QC Snakemake To Run Resources and data specified within snakefile (hg002QC

Juniper A. Lake 2 Feb 16, 2022
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
Parses data out of your Google Takeout (History, Activity, Youtube, Locations, etc...)

google_takeout_parser parses both the Historical HTML and new JSON format for Google Takeouts caches individual takeout results behind cachew merge mu

Sean Breckenridge 27 Dec 28, 2022
Pipeline to convert a haploid assembly into diploid

HapDup (haplotype duplicator) is a pipeline to convert a haploid long read assembly into a dual diploid assembly. The reconstructed haplotypes

Mikhail Kolmogorov 50 Jan 05, 2023
💬 Python scripts to parse Messenger, Hangouts, WhatsApp and Telegram chat logs into DataFrames.

Chatistics Python 3 scripts to convert chat logs from various messaging platforms into Pandas DataFrames. Can also generate histograms and word clouds

Florian 893 Jan 02, 2023
CS50 pset9: Using flask API to create a web application to exchange stocks' shares.

C$50 Finance In this guide we want to implement a website via which users can “register”, “login” “buy” and “sell” stocks, like below: Background If y

1 Jan 24, 2022
Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Codes for the collection and predictive processing of bitcoin from the API of coinmarketcap

Teo Calvo 5 Apr 26, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022
A Numba-based two-point correlation function calculator using a grid decomposition

A Numba-based two-point correlation function (2PCF) calculator using a grid decomposition. Like Corrfunc, but written in Numba, with simplicity and hackability in mind.

Lehman Garrison 3 Aug 24, 2022