Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

Overview

MidiBERT-Piano


MIT License ARXIV LICENSE STAR ISSUE

Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen

Introduction

This is the official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

With this repository, you can

  • pre-train a MidiBERT-Piano with your customized pre-trained dataset
  • fine-tune & evaluate on 4 downstream tasks
  • compare its performance with a Bi-LSTM

All the datasets employed in this work are publicly available.

Quick Start

If you'd like to reproduce the results (MidiBERT) shown in the paper, image-20210710185007453

  1. please download the checkpoints, and rename files like the following
MidiBERT/{CP/remi}/
result
└── finetune
	└── melody_default
		└── model_best.ckpt
	└── velocity_default
		└── model_best.ckpt
	└── composer_default
		└── model_best.ckpt
	└── emotion_default
		└── model_best.ckpt
  1. please refer to evaluation,

and you are free to go! (btw, no gpu is needed for evaluation)

Installation

  • Python3
  • Install generally used packages for MidiBERT-Piano:
git clone https://github.com/wazenmai/MIDI-BERT.git
cd MIDI-BERT
pip install -r requirements.txt

A. Prepare Data

All data in CP/REMI token are stored in data/CP & data/remi, respectively, including the train, valid, test split.

You can also preprocess as below.

1. download dataset and preprocess

  • Pop1K7
  • ASAP
    • Step 1: Download ASAP dataset from the link
    • Step 2: Use Dataset/ASAP_song.pkl to extract songs to Dataset/ASAP
  • POP909
    • preprocess to have 865 pieces in qualified 4/4 time signature
    • exploratory.py to get pieces qualified in 4/4 time signature and save at qual_pieces.pkl
    • preprocess.py to realign and preprocess
    • Special thanks to Shih-Lun (Sean) Wu
  • Pianist8
    • Step 1: Download Pianist8 dataset from the link
    • Step 2: Use Dataset/pianist8_(mode).pkl to extracts songs to Dataset/pianist8/mode
  • EMOPIA
    • Step 1: Download Emopia dataset from the link
    • Step 2: Use Dataset/emopia_(mode).pkl to extracts songs to Dataset/emopia/mode

2. prepare dict

dict/make_dict.py customize the events & words you'd like to add.

In this paper, we only use Bar, Position, Pitch, Duration. And we provide our dictionaries in CP & REMI representation.

dict/CP.pkl

dict/remi.pkl

3. prepare CP & REMI

./prepare_data/CP

  • Run python3 main.py . Please specify the dataset and whether you wanna prepare an answer array for the task (i.e. melody extraction, velocity prediction, composer classification and emotion classification).
  • For example, python3 main.py --dataset=pop909 --task=melody --dir=[DIR_TO_STORE_DATA]

./prepare_data/remi/

  • The same logic applies to preparing REMI data.

Acknowledgement: CP repo, remi repo

You may encode these midi files in different representations, the data split is in ***.

B. Pre-train a MidiBERT-Piano

./MidiBERT/CP and ./MidiBERT/remi

  • pre-train a MidiBERT-Piano
python3 main.py --name=default

A folder named CP_result/pretrain/default/ will be created, with checkpoint & log inside.

  • customize your own pre-training dataset Feel free to select given dataset and add your own dataset. To do this, add --dataset, and specify the respective path in load_data() function. For example,
# to pre-train a model with only 2 datasets
python3 main.py --name=default --dataset pop1k7 asap	

Acknowledgement: HuggingFace

Special thanks to Chin-Jui Chang

C. Fine-tune & Evaluate on Downstream Tasks

./MidiBERT/CP and ./MidiBERT/remi

1. fine-tuning

  • finetune.py
python3 finetune.py --task=melody --name=default

A folder named CP_result/finetune/{name}/ will be created, with checkpoint & log inside.

2. evaluation

  • eval.py
python3 eval.py --task=melody --cpu --ckpt=[ckpt_path]

Test loss & accuracy will be printed, and a figure of confusion matrix will be saved.

The same logic applies to REMI representation.

D. Baseline Model (Bi-LSTM)

./baseline/CP & ./baseline/remi

We seperate our baseline model to note-level tasks, which used a Bi-LSTM, and sequence-level tasks, which used a Bi-LSTM + Self-attention model.

For evaluation, in note-level task, please specify the checkpoint name. In sequence-level task, please specify only the output name you set when you trained.

  • Train a Bi-LSTM

    • note-level task
     python3 main.py --task=melody --name=0710
    • sequence-level task
     python3 main.py --task=composer --output=0710
  • Evaluate

    • note-level task:
     python3 eval.py --task=melody --ckpt=result/melody-LSTM/0710/LSTM-melody-classification.pth
    • sequence-level task
     python3 eval.py --task='composer' --ckpt=0710

The same logic applies to REMI representation.

Special thanks to Ching-Yu (Sunny) Chiu

E. Skyline

Get the accuracy on pop909 using skyline algorithm

python3 cal_acc.py

Since Pop909 contains melody, bridge, accompaniment, yet skyline cannot distinguish between melody and bridge.

There are 2 ways to report its accuracy:

  1. Consider Bridge as Accompaniment, attains 78.54% accuracy
  2. Consider Bridge as Melody, attains 79.51%

Special thanks to Wen-Yi Hsiao for providing the code for skyline algorithm.

Citation

If you find this useful, please cite our paper.

@article{midibertpiano,
  title={{MidiBERT-Piano}: Large-scale Pre-training for Symbolic Music Understanding},
  author={Yi-Hui Chou and I-Chun Chen and Chin-Jui Chang and Joann Ching, and Yi-Hsuan Yang},
  journal={arXiv preprint arXiv:2107.05223},
  year={2021}
}
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
TeachMyAgent is a testbed platform for Automatic Curriculum Learning methods in Deep RL.

TeachMyAgent: a Benchmark for Automatic Curriculum Learning in Deep RL Paper Website Documentation TeachMyAgent is a testbed platform for Automatic Cu

Flowers Team 51 Dec 25, 2022
A new play-and-plug method of controlling an existing generative model with conditioning attributes and their compositions.

Viz-It Data Visualizer Web-Application If I ask you where most of the data wrangler looses their time ? It is Data Overview and EDA. Presenting "Viz-I

NVIDIA Research Projects 66 Jan 01, 2023
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Fully Adversarial Mosaics (FAMOS) Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Imag

Zalando Research 120 Dec 24, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
Multi-layer convolutional LSTM with Pytorch

Convolution_LSTM_pytorch Thanks for your attention. I haven't got time to maintain this repo for a long time. I recommend this repo which provides an

Zijie Zhuang 733 Dec 30, 2022
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Adaptive Graph Convolution for Point Cloud Analysis

Adaptive Graph Convolution for Point Cloud Analysis This repository contains the implementation of AdaptConv for point cloud analysis. Adaptive Graph

64 Dec 21, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Trading Gym is an open source project for the development of reinforcement learning algorithms in the context of trading.

Trading Gym Trading Gym is an open-source project for the development of reinforcement learning algorithms in the context of trading. It is currently

Dimitry Foures 535 Nov 15, 2022
Universal Adversarial Triggers for Attacking and Analyzing NLP (EMNLP 2019)

Universal Adversarial Triggers for Attacking and Analyzing NLP This is the official code for the EMNLP 2019 paper, Universal Adversarial Triggers for

Eric Wallace 248 Dec 17, 2022
FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data

FEMDA: Robust classification with Flexible Discriminant Analysis in heterogeneous data. Flexible EM-Inspired Discriminant Analysis is a robust supervised classification algorithm that performs well i

0 Sep 06, 2022
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing".

BMC The code for the NSDI'21 paper "BMC: Accelerating Memcached using Safe In-kernel Caching and Pre-stack Processing". BibTex entry available here. B

Orange 383 Dec 16, 2022
Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Official Implementation of SimIPU SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations Since

Zhyever 37 Dec 01, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022