ReferFormer - Official Implementation of ReferFormer

Overview

License Framework

PWC PWC

The official implementation of the paper:

Language as Queries for Referring
Video Object Segmentation

Language as Queries for Referring Video Object Segmentation

Jiannan Wu, Yi Jiang, Peize Sun, Zehuan Yuan, Ping Luo

Abstract

In this work, we propose a simple and unified framework built upon Transformer, termed ReferFormer. It views the language as queries and directly attends to the most relevant regions in the video frames. Concretely, we introduce a small set of object queries conditioned on the language as the input to the Transformer. In this manner, all the queries are obligated to find the referred objects only. They are eventually transformed into dynamic kernels which capture the crucial object-level information, and play the role of convolution filters to generate the segmentation masks from feature maps. The object tracking is achieved naturally by linking the corresponding queries across frames. This mechanism greatly simplifies the pipeline and the end-to-end framework is significantly different from the previous methods. Extensive experiments on Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences show the effectiveness of ReferFormer.

Requirements

We test the codes in the following environments, other versions may also be compatible:

  • CUDA 11.1
  • Python 3.7
  • Pytorch 1.8.1

Installation

Please refer to install.md for installation.

Data Preparation

Please refer to data.md for data preparation.

We provide the pretrained model for different visual backbones. You may download them here and put them in the directory pretrained_weights.

After the organization, we expect the directory struture to be the following:

ReferFormer/
├── data/
│   ├── ref-youtube-vos/
│   ├── ref-davis/
│   ├── a2d_sentences/
│   ├── jhmdb_sentences/
├── davis2017/
├── datasets/
├── models/
├── scipts/
├── tools/
├── util/
├── pretrained_weights/
├── eval_davis.py
├── main.py
├── engine.py
├── inference_ytvos.py
├── inference_davis.py
├── opts.py
...

Model Zoo

All the models are trained using 8 NVIDIA Tesla V100 GPU. You may change the --backbone parameter to use different backbones (see here).

Note: If you encounter the OOM error, please add the command --use_checkpoint (we add this command for Swin-L, Video-Swin-S and Video-Swin-B models).

Ref-Youtube-VOS

To evaluate the results, please upload the zip file to the competition server.

Backbone J&F CFBI J&F Pretrain Model Submission CFBI Submission
ResNet-50 55.6 59.4 weight model link link
ResNet-101 57.3 60.3 weight model link link
Swin-T 58.7 61.2 weight model link link
Swin-L 62.4 63.3 weight model link link
Video-Swin-T* 55.8 - - model link -
Video-Swin-T 59.4 - weight model link -
Video-Swin-S 60.1 - weight model link -
Video-Swin-B 62.9 - weight model link -

* indicates the model is trained from scratch.

Ref-DAVIS17

As described in the paper, we report the results using the model trained on Ref-Youtube-VOS without finetune.

Backbone J&F J F Model
ResNet-50 58.5 55.8 61.3 model
Swin-L 60.5 57.6 63.4 model
Video-Swin-B 61.1 58.1 64.1 model

A2D-Sentences

The pretrained models are the same as those provided for Ref-Youtube-VOS.

Backbone Overall IoU Mean IoU mAP Pretrain Model
Video-Swin-T 77.6 69.6 52.8 weight model | log
Video-Swin-S 77.7 69.8 53.9 weight model | log
Video-Swin-B 78.6 70.3 55.0 weight model | log

JHMDB-Sentences

As described in the paper, we report the results using the model trained on A2D-Sentences without finetune.

Backbone Overall IoU Mean IoU mAP Model
Video-Swin-T 71.9 71.0 42.2 model
Video-Swin-S 72.8 71.5 42.4 model
Video-Swin-B 73.0 71.8 43.7 model

Get Started

Please see Ref-Youtube-VOS, Ref-DAVIS17, A2D-Sentences and JHMDB-Sentences for details.

Acknowledgement

This repo is based on Deformable DETR and VisTR. We also refer to the repositories MDETR and MTTR. Thanks for their wonderful works.

Citation

@article{wu2022referformer,
      title={Language as Queries for Referring Video Object Segmentation}, 
      author={Jiannan Wu and Yi Jiang and Peize Sun and Zehuan Yuan and Ping Luo},
      journal={arXiv preprint arXiv:2201.00487},
      year={2022},
}
Owner
Jonas Wu
The University of Hong Kong. PhD Candidate. Computer Vision.
Jonas Wu
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
TensorFlow Metal Backend on Apple Silicon Experiments (just for fun)

tf-metal-experiments TensorFlow Metal Backend on Apple Silicon Experiments (just for fun) Setup This is tested on M1 series Apple Silicon SOC only. Te

Timothy Liu 161 Jan 03, 2023
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
Video2x - A lossless video/GIF/image upscaler achieved with waifu2x, Anime4K, SRMD and RealSR.

Official Discussion Group (Telegram): https://t.me/video2x A Discord server is also available. Please note that most developers are only on Telegram.

K4YT3X 5.9k Dec 31, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
A fuzzing framework for SMT solvers

yinyang A fuzzing framework for SMT solvers. Given a set of seed SMT formulas, yinyang generates mutant formulas to stress-test SMT solvers. yinyang c

Project Yin-Yang for SMT Solver Testing 145 Jan 04, 2023
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022