Adversarial Framework for (non-) Parametric Image Stylisation Mosaics

Overview

Fully Adversarial Mosaics (FAMOS)

Pytorch implementation of the paper "Copy the Old or Paint Anew? An Adversarial Framework for (non-) Parametric Image Stylization" available at http://arxiv.org/abs/1811.09236.

This code allows to generate image stylisation using an adversarial approach combining parametric and non-parametric elements. Tested to work on Ubuntu 16.04, Pytorch 0.4, Python 3.6. Nvidia GPU p100. It is recommended to have a GPU with 12, 16GB, or more of VRAM.

Parameters

Our method has many possible settings. You can specify them with command-line parameters. The options parser that defines these parameters is in the config.py file and the options are parsed there. You are free to explore them and discover the functionality of FAMOS, which can cover a very broad range of image stylization settings.

There are 5 groups of parameter types:

  • data path and loading parameters
  • neural network parameters
  • regularization and loss criteria weighting parameters
  • optimization parameters
  • parameters of the stochastic noise -- see PSGAN

Update Febr. 2019: video frame-by-frame rendering supported

mosaicGAN.py can now render a whole folder of test images with the trained model. Example videos: lion video with Münich and Berlin

Just specify

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=myFolder/ --testImage=myFolder/ 

with your myFolder and all images from that folder will be rendered by the generator of the GAN. Best to use the same test folder as content folder for training. To use in a video editing pipeline, save all video frames as images with a tool like AVIDEMUX, train FAMOS and save rendered frames, assemble again as video. Note: this my take some time to render thousands of images, you can edit in the code VIDEO_SAVE_FREQ to render the test image folder less frequently.

Update Jan. 2019: new functionality for texture synthesis

Due to interest in a new Pytorch implementation of our last paper "Texture Synthesis with Spatial Generative Adversarial Networks" (PSGAN) we added a script reimplementing it in the current repository. It shares many components with the texture mosaic stylization approach. A difference: PSGAN has no content image and loss, the generator is conditioned only on noise. Example call for texture synthesis:

python PSGAN.py --texturePath=samples/milano/ --ngf=120 --zLoc=50 --ndf=120 --nDep=5 --nDepD=5 --batchSize=16

In general, texture synthesis is much faster than the other methods in this repository, so feel free to add more channels and increase th batchsize. For more details and inspiration how to play with texture synthesis see our old repository with Lasagne code for PSGAN.

Usage: parametric convolutional adversarial mosaic

We provide scripts that have a main loop in which we (i) train an adversarial stylization model and (ii) save images (inference mode). If you need it, you can easily modify the code to save a trained model and load it later to do inference on many other images, see comments at the end of mosaicGAN.py.

In the simplest case, let us start an adversarial mosaic using convolutional networks. All you need is to specify the texture and content folders:

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/

This repository includes sample style files (4 satellite views of Milano, from Google Maps) and a portrait of Archimboldo (from the Google Art Project). Our GAN method will start running and training, occasionally saving results in "results/milano/archimboldo/" and printing the loss values to the terminal. Note that we use the first image found in contentPath as the default full-size output image stylization from FAMOS. You can also specify another image file name testImage to do out-of-sample stylization (inference).

This version uses DCGAN by default, which works nicely for the convolutional GAN we have here. Add the parameter LS for a least squares loss, which also works nicely. Interestingly, WGAN-GP is poorer for our model, which we did not investigate in detail.

If you want to tune the optimisation and model, you can adjust the layers and channels of the Generator and Discriminator, and also choose imageSize and batchSize. All this will effect the speed and performance of the model. You can also tweak the correspondance map cLoss and the content loss weighting fContent

python mosaicGAN.py --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --imageSize=192 --batchSize=8 --ngf=80 --ndf=80  --nDepD=5  --nDep=4 --cLoss=101 --fContent=.6

Other interesting options are skipConnections and Ubottleneck. By disabling the skip connections of the Unet and defining a smaller bottleneck we can reduce the effect of the content image and emphasize more the texture style of the output.

Usage: the full FAMOS approach with parametric and non-parametric aspects

Our method has the property of being able to copy pixels from template images together with the convolutional generation of the previous section.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --dIter=2 --WGAN=True

Here we specify N=80 memory templates to copy from. In addition, we use mirror augmentation to get nice kaleidoscope-like effects in the template (and texture distribution). We use the WGAN GAN criterium, which works better for the combined parametric/non-parametric case (experimenting with the usage of DCGAN and WGAN depending on the architecture is advised). We set to use dIter=2 D steps for each G step.

The code also supports a slightly more complicated implementation than the one described in the paper. By setting multiScale=True a mixed template of images I_M on multiple levels of the Unet is used. In addition, by setting nBlocks=2 we will add residual layers to the decoder of the Unet, for a model with even higher capacity. Finally, you can also set refine=True and add a second Unet to refine the results of the first one. Of course, all these additional layers come at a computational cost -- selecting the layer depth, channel width, and the use of all these additional modules is a matter of trade-off and experimenting.

python mosaicFAMOS.py  --texturePath=samples/milano/ --contentPath=samples/archimboldo/ --N=80 --mirror=True --multiScale=True --nBlocks=1 --dIter=2 --WGAN=True

The method will save mosaics occasionally, and optionally you can specify a testImage (size smaller than the initial content image) to check out-of-sample performance. You can check the patches image saved regularly how the patch based training proceeds. The files has a column per batch-instance, and 6 rows showing the quantities from the paper:

  • I_C content patch
  • I_M mixed template patch on highest scale
  • I_G parametric generation component
  • I blended patch
  • \alpha blending mask
  • A mixing matrix

License

Please make sure to cite/acknowledge our paper, if you use any of the contained code in your own projects or publication.

The MIT License (MIT)

Copyright © 2018 Zalando SE, https://tech.zalando.com

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Owner
Zalando Research
Repositories of the research branch of Zalando SE
Zalando Research
Python Research Framework

Python Research Framework

EleutherAI 106 Dec 13, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022
This machine learning model was developed for House Prices

This machine learning model was developed for House Prices - Advanced Regression Techniques competition in Kaggle by using several machine learning models such as Random Forest, XGBoost and LightGBM.

serhat_derya 1 Mar 02, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

#30DaysOfStreamlit is a 30-day social challenge for you to build and deploy Streamlit apps.

30 Days Of Streamlit 🎈 This is the official repo of #30DaysOfStreamlit — a 30-day social challenge for you to learn, build and deploy Streamlit apps.

Streamlit 53 Jan 02, 2023
Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning My

3 Apr 10, 2022
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
slim-python is a package to learn customized scoring systems for decision-making problems.

slim-python is a package to learn customized scoring systems for decision-making problems. These are simple decision aids that let users make yes-no p

Berk Ustun 37 Nov 02, 2022
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
monolish: MONOlithic Liner equation Solvers for Highly-parallel architecture

monolish is a linear equation solver library that monolithically fuses variable data type, matrix structures, matrix data format, vendor specific data transfer APIs, and vendor specific numerical alg

RICOS Co. Ltd. 179 Dec 21, 2022
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
This is the code repository for LRM Stochastic watershed model.

LRM-Squannacook Input data for generating stochastic streamflows are observed and simulated timeseries of streamflow. their format needs to be CSV wit

1 Feb 14, 2022
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
A benchmark of data-centric tasks from across the machine learning lifecycle.

A benchmark of data-centric tasks from across the machine learning lifecycle.

61 Dec 28, 2022