An AutoML survey focusing on practical systems.

Overview

AutoML Survey

An (in-progress) AutoML survey focusing on practical systems.


This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow daily. Hence, we cannot hope to provide a comprehensive description of every interesting idea or approach available. Thus, we decided to focus on practical AutoML systems, and spread outwards from there into the methodologies and theoretical concepts that power these systems. Our intuition is that, even though there are a lot of interesting ideas still in research stage, the most mature and battle-tested concepts are those that have been succesfully applied to construct practical AutoML systems.

To this end, we are building a database of qualitative criteria for all AutoML systems we've heard of. We define an AutoML system as a software project that can be used by non-experts in machine learning to build effective ML pipelines on at least some common domains and tasks. It doesn't matter if its open-source and/or commercial, a library or an application with a GUI, or a cloud service. What matters is that it is intended to be used in practice, as opposed to, say, a reference implementation of a novel AutoML strategy in a Jupyter Notebook.

Features of an AutoML system

For each of them we are creating a system card that describes, in our opinion, the most relevant features of the system, both from the scientific and the engineering points of view. To describe an AutoML system, we use a YAML-based definition. Most of the features are self-explanatory.

💡 Check data/systems/_template.yml for a starting template.

Basic information

Characteristics about the basic information of the system as a software product.

  • name (str): Name of the system.
  • description (str): A short (2-4 sentences) description of the sytem.
  • website (str): The URL of the main website or documentation.
  • open_source (bool): Whether the system is open-source.
  • institutions (list[str]): List of businesses or academic institutions that directly support the development of the system, and/or hold intellectual property over it.
  • repository (str): If it's open-source, link of a public source code repository, otherwise null.
  • license (str): If it's open-source, a license key, otherwise null.
  • references (list[str]): List of links to relevant papers, preferably DOIs or other universal handlers, but can also be links to arxiv.org or other repositories sorted by most relevant papers, not date.

User interfaces

Characteristics describing how the users interact with the system.

  • cli (bool): Whether the system has a command line interface
  • gui (bool): Whether the system has a graphic user interface
  • http (bool): Whether the system can used from an HTTP RESTful API
  • library (bool): Whether the system can be linked as a code library
  • programming_languages (list[str]): List of programming languages in which the system can be used, i.e., it is either natively coded in that language or there are maintained bindings (as opposed to using language X's standard way to call code from language Y).

Domains

Characteristics describing the domains in which the system can be applied, which roughly correspond to the types of input data that the system can handle.

  • domains (list[str]): Domains in which the system can be deployed. Valid values are:
    • images
    • nlp
    • tabular
    • time_series
  • multi_domain (bool): Whether the system supports multiple domains for a single workflow, e.g., by allowing multiple inputs of different types simultaneously

Techniques

Characteristics describing the actual models and techniques used in the system, and the underlying ML libraries where those techniques are implemented.

  • techniques (list[str]): List of high-level techniques that are available in the systems, broadly classified according to model families. Valid values are:
    • linear_models
    • trees
    • bayesian
    • kernel_machines
    • graphical_models
    • mlp
    • cnn
    • rnn
    • pretrained
    • ensembles
    • ad_hoc ( 📝 indicates non-ML algorithms, e.g., tokenizers)
  • distillation (bool): Whether the system supports model distillation
  • ml_libraries (list[str]): List of ML libraries that support the system, i.e., where the techniques are actually implemented, if any. Valid values are lists of strings. Some examples are:
    • scikit-learn
    • keras
    • pytorch
    • nltk
    • spacy
    • transformers

Tasks

Characteristics describing the types of tasks, or problems, in which the system can be applied, which roughly correspond to the types of outputs supported.

  • tasks (list[str]): List of high-level tasks the system can perform automatically. Valid values are:
    • classification
    • structured_prediction
    • structured_generation
    • unstructured_generation
    • regression
    • clustering
    • imputation
    • segmentation
    • feature_preprocessing
    • feature_selection
    • data_augmentation
    • dimensionality_reduction
    • data_preprocessing ( 📝 domain-agonostic data preprocessing such as normalization and scaling)
    • domain_preprocessing ( 📝 refers to domain-specific preprocessing, e.g., stemming)
  • multi_task: Whether the system supports multiple tasks in a single workflow, e.g., by allowing multiple output heads from the same neural network

Search strategies

Characteristics describing the optimizaction/search strategies used for model search and/or hyperparameter tunning.

  • search_strategies (list[str]): List of high-level search strategies that are available in the system. Valid values are:
    • random
    • evolutionary
    • gradient_descent
    • hill_climbing
    • bayesian
    • grid
    • hyperband
    • reinforcement_learning
    • constructive
    • monte_carlo
  • meta_learning (list[str]): If the system includes meta-learning, list of broadly classified techniques used. Valid values are:
    • portfolio
    • warm_start

Search space

Characteristics describing the search space, the types of hyperparameters that can be optimized, and the types of ML pipelines that can be represented in this space.

  • search_space: High-level characteristics of the hyperparameter search space.
    • hierarchical (bool): If there are hyperparameters that only make sense conditioned to others.
    • probabilistic (bool): If the hyperparameter space has an associated probabilistic model.
    • differentiable (bool): If the hyperameter space can be used for gradient descent.
    • automatic (bool): If the global structure of the hyperparameter space is inferred automatically from, e.g., type annotations or model's documentation, as opposed to explicitely defined by the developers or the user.
    • hyperparameters (list[str]): Types of hyperparameters that can be optimized. Valid values are:
      • continuous
      • discrete
      • categorical
      • conditional
    • pipelines: Types of pipelines that can be discovered by the AutoML process. Each of the following keys is boolean.
      • single (bool): A single estimator (or model in general)
      • fixed (bool): A fixed pipeline with several, but predefined, steps
      • linear (bool): A variable-length pipeline where each step feeds on the immediately previous output
      • graph (bool): An arbitrarily graph-shaped pipeline where each step can feed on any of the previous outputs
    • robust (bool): Whether the seach space contains potentially invalid pipelines that are only discovered when evaluated, e.g., allowing a dense-only estimator to precede a sparse transformer.

Software architecture

Other characteristics describing general features of the system as a software product.

  • extensible (bool): Whether the system is designed to be extensible, in the sense that a user can add a single new type of model, or search algorithm, etc., in an easy manner, not needing to modify any part of the system/
  • accessible (bool): Whether the models obtained from the AutoML process can be freely inspected by the user up to the level of individual parameters (e.g., neural network weights).
  • portable (bool): Whether the models obtained can be exported out of the AutoML system, either on a standard format, or, at least, in a format native of the underlying ML library,such that they can be deployed on another platform without depending on the AutoML system itself.
  • computational_resources: Computational resources that, if available, can be leveraged by the system.
    • gpu (bool): Whether the system supports GPUs.
    • tpu (bool): Whether the system supports TPUs.
    • cluster (bool): Whether the system supports cluster-based parallelism.

How to contribute

If you are an author or a user of any practical AutoML system that roughly fits the previous criteria, we would love to have your contributions. You can add new systems, add information for existing ones, or fix anything that is incorrect.

To do this, either create a new or modify an existing file in data/systems. Once done, you can run make check to ensure that the modifications are valid with respect to the schema defined in scripts/models.py. If you need to add new fields, or new values to any of the enumerations defined, feel free to modify the corresponding schema as well (and modify both data/systems/_template.yml and this README).

Once validated, you can open a pull request.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Owner
AutoGOAL
Democratizing Machine Learning
AutoGOAL
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
Create large-scale ML-driven multiscale simulation ensembles to study the interactions

MuMMI RAS v0.1 Released: Nov 16, 2021 MuMMI RAS is the application component of the MuMMI framework developed to create large-scale ML-driven multisca

4 Feb 16, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

Sontag Lab 75 Jan 03, 2023
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
A simple guide to MLOps through ZenML and its various integrations.

ZenBytes Join our Slack Community and become part of the ZenML family Give the main ZenML repo a GitHub star to show your love ZenBytes is a series of

ZenML 127 Dec 27, 2022
Machine learning template for projects based on sklearn library.

Machine learning template for projects based on sklearn library.

Janez Lapajne 17 Oct 28, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
Greykite: A flexible, intuitive and fast forecasting library

The Greykite library provides flexible, intuitive and fast forecasts through its flagship algorithm, Silverkite.

LinkedIn 1.4k Jan 15, 2022
TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models.

TensorFlow Decision Forests (TF-DF) is a collection of state-of-the-art algorithms for the training, serving and interpretation of Decision Forest models. The library is a collection of Keras models

538 Jan 01, 2023
Python Machine Learning Jupyter Notebooks (ML website)

Python Machine Learning Jupyter Notebooks (ML website) Dr. Tirthajyoti Sarkar, Fremont, California (Please feel free to connect on LinkedIn here) Also

Tirthajyoti Sarkar 2.6k Jan 03, 2023
Exemplary lightweight and ready-to-deploy machine learning project

Exemplary lightweight and ready-to-deploy machine learning project

snapADDY GmbH 6 Dec 20, 2022
The easy way to combine mlflow, hydra and optuna into one machine learning pipeline.

mlflow_hydra_optuna_the_easy_way The easy way to combine mlflow, hydra and optuna into one machine learning pipeline. Objective TODO Usage 1. build do

shibuiwilliam 9 Sep 09, 2022
An open source framework that provides a simple, universal API for building distributed applications. Ray is packaged with RLlib, a scalable reinforcement learning library, and Tune, a scalable hyperparameter tuning library.

Ray provides a simple, universal API for building distributed applications. Ray is packaged with the following libraries for accelerating machine lear

23.3k Dec 31, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022