An AutoML survey focusing on practical systems.

Overview

AutoML Survey

An (in-progress) AutoML survey focusing on practical systems.


This project is a community effort in constructing and maintaining an up-to-date beginner-friendly introduction to AutoML, focusing on practical systems. AutoML is a big field, and continues to grow daily. Hence, we cannot hope to provide a comprehensive description of every interesting idea or approach available. Thus, we decided to focus on practical AutoML systems, and spread outwards from there into the methodologies and theoretical concepts that power these systems. Our intuition is that, even though there are a lot of interesting ideas still in research stage, the most mature and battle-tested concepts are those that have been succesfully applied to construct practical AutoML systems.

To this end, we are building a database of qualitative criteria for all AutoML systems we've heard of. We define an AutoML system as a software project that can be used by non-experts in machine learning to build effective ML pipelines on at least some common domains and tasks. It doesn't matter if its open-source and/or commercial, a library or an application with a GUI, or a cloud service. What matters is that it is intended to be used in practice, as opposed to, say, a reference implementation of a novel AutoML strategy in a Jupyter Notebook.

Features of an AutoML system

For each of them we are creating a system card that describes, in our opinion, the most relevant features of the system, both from the scientific and the engineering points of view. To describe an AutoML system, we use a YAML-based definition. Most of the features are self-explanatory.

💡 Check data/systems/_template.yml for a starting template.

Basic information

Characteristics about the basic information of the system as a software product.

  • name (str): Name of the system.
  • description (str): A short (2-4 sentences) description of the sytem.
  • website (str): The URL of the main website or documentation.
  • open_source (bool): Whether the system is open-source.
  • institutions (list[str]): List of businesses or academic institutions that directly support the development of the system, and/or hold intellectual property over it.
  • repository (str): If it's open-source, link of a public source code repository, otherwise null.
  • license (str): If it's open-source, a license key, otherwise null.
  • references (list[str]): List of links to relevant papers, preferably DOIs or other universal handlers, but can also be links to arxiv.org or other repositories sorted by most relevant papers, not date.

User interfaces

Characteristics describing how the users interact with the system.

  • cli (bool): Whether the system has a command line interface
  • gui (bool): Whether the system has a graphic user interface
  • http (bool): Whether the system can used from an HTTP RESTful API
  • library (bool): Whether the system can be linked as a code library
  • programming_languages (list[str]): List of programming languages in which the system can be used, i.e., it is either natively coded in that language or there are maintained bindings (as opposed to using language X's standard way to call code from language Y).

Domains

Characteristics describing the domains in which the system can be applied, which roughly correspond to the types of input data that the system can handle.

  • domains (list[str]): Domains in which the system can be deployed. Valid values are:
    • images
    • nlp
    • tabular
    • time_series
  • multi_domain (bool): Whether the system supports multiple domains for a single workflow, e.g., by allowing multiple inputs of different types simultaneously

Techniques

Characteristics describing the actual models and techniques used in the system, and the underlying ML libraries where those techniques are implemented.

  • techniques (list[str]): List of high-level techniques that are available in the systems, broadly classified according to model families. Valid values are:
    • linear_models
    • trees
    • bayesian
    • kernel_machines
    • graphical_models
    • mlp
    • cnn
    • rnn
    • pretrained
    • ensembles
    • ad_hoc ( 📝 indicates non-ML algorithms, e.g., tokenizers)
  • distillation (bool): Whether the system supports model distillation
  • ml_libraries (list[str]): List of ML libraries that support the system, i.e., where the techniques are actually implemented, if any. Valid values are lists of strings. Some examples are:
    • scikit-learn
    • keras
    • pytorch
    • nltk
    • spacy
    • transformers

Tasks

Characteristics describing the types of tasks, or problems, in which the system can be applied, which roughly correspond to the types of outputs supported.

  • tasks (list[str]): List of high-level tasks the system can perform automatically. Valid values are:
    • classification
    • structured_prediction
    • structured_generation
    • unstructured_generation
    • regression
    • clustering
    • imputation
    • segmentation
    • feature_preprocessing
    • feature_selection
    • data_augmentation
    • dimensionality_reduction
    • data_preprocessing ( 📝 domain-agonostic data preprocessing such as normalization and scaling)
    • domain_preprocessing ( 📝 refers to domain-specific preprocessing, e.g., stemming)
  • multi_task: Whether the system supports multiple tasks in a single workflow, e.g., by allowing multiple output heads from the same neural network

Search strategies

Characteristics describing the optimizaction/search strategies used for model search and/or hyperparameter tunning.

  • search_strategies (list[str]): List of high-level search strategies that are available in the system. Valid values are:
    • random
    • evolutionary
    • gradient_descent
    • hill_climbing
    • bayesian
    • grid
    • hyperband
    • reinforcement_learning
    • constructive
    • monte_carlo
  • meta_learning (list[str]): If the system includes meta-learning, list of broadly classified techniques used. Valid values are:
    • portfolio
    • warm_start

Search space

Characteristics describing the search space, the types of hyperparameters that can be optimized, and the types of ML pipelines that can be represented in this space.

  • search_space: High-level characteristics of the hyperparameter search space.
    • hierarchical (bool): If there are hyperparameters that only make sense conditioned to others.
    • probabilistic (bool): If the hyperparameter space has an associated probabilistic model.
    • differentiable (bool): If the hyperameter space can be used for gradient descent.
    • automatic (bool): If the global structure of the hyperparameter space is inferred automatically from, e.g., type annotations or model's documentation, as opposed to explicitely defined by the developers or the user.
    • hyperparameters (list[str]): Types of hyperparameters that can be optimized. Valid values are:
      • continuous
      • discrete
      • categorical
      • conditional
    • pipelines: Types of pipelines that can be discovered by the AutoML process. Each of the following keys is boolean.
      • single (bool): A single estimator (or model in general)
      • fixed (bool): A fixed pipeline with several, but predefined, steps
      • linear (bool): A variable-length pipeline where each step feeds on the immediately previous output
      • graph (bool): An arbitrarily graph-shaped pipeline where each step can feed on any of the previous outputs
    • robust (bool): Whether the seach space contains potentially invalid pipelines that are only discovered when evaluated, e.g., allowing a dense-only estimator to precede a sparse transformer.

Software architecture

Other characteristics describing general features of the system as a software product.

  • extensible (bool): Whether the system is designed to be extensible, in the sense that a user can add a single new type of model, or search algorithm, etc., in an easy manner, not needing to modify any part of the system/
  • accessible (bool): Whether the models obtained from the AutoML process can be freely inspected by the user up to the level of individual parameters (e.g., neural network weights).
  • portable (bool): Whether the models obtained can be exported out of the AutoML system, either on a standard format, or, at least, in a format native of the underlying ML library,such that they can be deployed on another platform without depending on the AutoML system itself.
  • computational_resources: Computational resources that, if available, can be leveraged by the system.
    • gpu (bool): Whether the system supports GPUs.
    • tpu (bool): Whether the system supports TPUs.
    • cluster (bool): Whether the system supports cluster-based parallelism.

How to contribute

If you are an author or a user of any practical AutoML system that roughly fits the previous criteria, we would love to have your contributions. You can add new systems, add information for existing ones, or fix anything that is incorrect.

To do this, either create a new or modify an existing file in data/systems. Once done, you can run make check to ensure that the modifications are valid with respect to the schema defined in scripts/models.py. If you need to add new fields, or new values to any of the enumerations defined, feel free to modify the corresponding schema as well (and modify both data/systems/_template.yml and this README).

Once validated, you can open a pull request.

License

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Owner
AutoGOAL
Democratizing Machine Learning
AutoGOAL
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Summer: compartmental disease modelling in Python

Summer: compartmental disease modelling in Python Summer is a Python-based framework for the creation and execution of compartmental (or "state-based"

6 May 13, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Decentralized deep learning in PyTorch. Built to train models on thousands of volunteers across the world.

Hivemind: decentralized deep learning in PyTorch Hivemind is a PyTorch library to train large neural networks across the Internet. Its intended usage

1.3k Jan 08, 2023
MLFlow in a Dockercontainer based on Azurite and Postgres

mlflow-azurite-postgres docker This is a MLFLow image which works with a postgres DB and a local Azure Blob Storage Instance (Azurite). This image is

2 May 29, 2022
This jupyter notebook project was completed by me and my friend using the dataset from Kaggle

ARM This jupyter notebook project was completed by me and my friend using the dataset from Kaggle. The world Happiness 2017, which ranks 155 countries

1 Jan 23, 2022
The Ultimate FREE Machine Learning Study Plan

The Ultimate FREE Machine Learning Study Plan

Patrick Loeber (Python Engineer) 2.5k Jan 05, 2023
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
Classification based on Fuzzy Logic(C-Means).

CMeans_fuzzy Classification based on Fuzzy Logic(C-Means). Table of Contents About The Project Fuzzy CMeans Algorithm Built With Getting Started Insta

Armin Zolfaghari Daryani 3 Feb 08, 2022
50% faster, 50% less RAM Machine Learning. Numba rewritten Sklearn. SVD, NNMF, PCA, LinearReg, RidgeReg, Randomized, Truncated SVD/PCA, CSR Matrices all 50+% faster

[Due to the time taken @ uni, work + hell breaking loose in my life, since things have calmed down a bit, will continue commiting!!!] [By the way, I'm

Daniel Han-Chen 1.4k Jan 01, 2023
Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques

Vowpal Wabbit is a machine learning system which pushes the frontier of machine learning with techniques such as online, hashing, allreduce, reductions, learning2search, active, and interactive learn

Vowpal Wabbit 8.1k Dec 30, 2022
This is the material used in my free Persian course: Machine Learning with Python

This is the material used in my free Persian course: Machine Learning with Python

Yara Mohamadi 4 Aug 07, 2022
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
A unified framework for machine learning with time series

Welcome to sktime A unified framework for machine learning with time series We provide specialized time series algorithms and scikit-learn compatible

The Alan Turing Institute 6k Jan 06, 2023
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
使用数学和计算机知识投机倒把

偷鸡不成项目集锦 坦率地讲,涉及金融市场的好策略如果公开,必然导致使用的人多,最后策略变差。所以这个仓库只收集我目前失败了的案例。 加密货币组合套利 中国体育彩票预测 我赚不上钱的项目,也许可以帮助更有能力的人去赚钱。

Roy 28 Dec 29, 2022
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022