Code for "Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans" CVPR 2021 best paper candidate

Overview

News

  • 05/17/2021 To make the comparison on ZJU-MoCap easier, we save quantitative and qualitative results of other methods at here, including Neural Volumes, Multi-view Neural Human Rendering, and Deferred Neural Human Rendering.
  • 05/13/2021 To make the following works easier compare with our model, we save our rendering results of ZJU-MoCap at here and write a document that describes the training and test protocols.
  • 05/12/2021 The code supports the test and visualization on unseen human poses.
  • 05/12/2021 We update the ZJU-MoCap dataset with better fitted SMPL using EasyMocap. We also release a website for visualization. Please see here for the usage of provided smpl parameters.

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans

Project Page | Video | Paper | Data

monocular

Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans
Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, Xiaowei Zhou
CVPR 2021

Any questions or discussions are welcomed!

Installation

Please see INSTALL.md for manual installation.

Installation using docker

Please see docker/README.md.

Thanks to Zhaoyi Wan for providing the docker implementation.

Run the code on the custom dataset

Please see CUSTOM.

Run the code on People-Snapshot

Please see INSTALL.md to download the dataset.

We provide the pretrained models at here.

Process People-Snapshot

We already provide some processed data. If you want to process more videos of People-Snapshot, you could use tools/process_snapshot.py.

You can also visualize smpl parameters of People-Snapshot with tools/vis_snapshot.py.

Visualization on People-Snapshot

Take the visualization on female-3-casual as an example. The command lines for visualization are recorded in visualize.sh.

  1. Download the corresponding pretrained model and put it to $ROOT/data/trained_model/if_nerf/female3c/latest.pth.

  2. Visualization:

    • Visualize novel views of single frame
    python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_view True num_render_views 144
    

    monocular

    • Visualize views of dynamic humans with fixed camera
    python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_novel_pose True
    

    monocular

    • Visualize mesh
    # generate meshes
    python run.py --type visualize --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c vis_mesh True train.num_workers 0
    # visualize a specific mesh
    python tools/render_mesh.py --exp_name female3c --dataset people_snapshot --mesh_ind 226
    

    monocular

  3. The results of visualization are located at $ROOT/data/render/female3c and $ROOT/data/perform/female3c.

Training on People-Snapshot

Take the training on female-3-casual as an example. The command lines for training are recorded in train.sh.

  1. Train:
    # training
    python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False
    # distributed training
    python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False gpus "0, 1, 2, 3" distributed True
    
  2. Train with white background:
    # training
    python train_net.py --cfg_file configs/snapshot_exp/snapshot_f3c.yaml exp_name female3c resume False white_bkgd True
    
  3. Tensorboard:
    tensorboard --logdir data/record/if_nerf
    

Run the code on ZJU-MoCap

Please see INSTALL.md to download the dataset.

We provide the pretrained models at here.

Potential problems of provided smpl parameters

  1. The newly fitted parameters locate in new_params. Currently, the released pretrained models are trained on previously fitted parameters, which locate in params.
  2. The smpl parameters of ZJU-MoCap have different definition from the one of MPI's smplx.
    • If you want to extract vertices from the provided smpl parameters, please use zju_smpl/extract_vertices.py.
    • The reason that we use the current definition is described at here.

It is okay to train Neural Body with smpl parameters fitted by smplx.

Test on ZJU-MoCap

The command lines for test are recorded in test.sh.

Take the test on sequence 313 as an example.

  1. Download the corresponding pretrained model and put it to $ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth.
  2. Test on training human poses:
    python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313
    
  3. Test on unseen human poses:
    python run.py --type evaluate --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 test_novel_pose True
    

Visualization on ZJU-MoCap

Take the visualization on sequence 313 as an example. The command lines for visualization are recorded in visualize.sh.

  1. Download the corresponding pretrained model and put it to $ROOT/data/trained_model/if_nerf/xyzc_313/latest.pth.

  2. Visualization:

    • Visualize novel views of single frame
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True
    

    zju_mocap

    • Visualize novel views of single frame by rotating the SMPL model
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_view True num_render_views 100
    

    zju_mocap

    • Visualize views of dynamic humans with fixed camera
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000 num_render_views 1
    

    zju_mocap

    • Visualize views of dynamic humans with rotated camera
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_novel_pose True num_render_frame 1000
    

    zju_mocap

    • Visualize mesh
    # generate meshes
    python run.py --type visualize --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 vis_mesh True train.num_workers 0
    # visualize a specific mesh
    python tools/render_mesh.py --exp_name xyzc_313 --dataset zju_mocap --mesh_ind 0
    

    zju_mocap

  3. The results of visualization are located at $ROOT/data/render/xyzc_313 and $ROOT/data/perform/xyzc_313.

Training on ZJU-MoCap

Take the training on sequence 313 as an example. The command lines for training are recorded in train.sh.

  1. Train:
    # training
    python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False
    # distributed training
    python -m torch.distributed.launch --nproc_per_node=4 train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False gpus "0, 1, 2, 3" distributed True
    
  2. Train with white background:
    # training
    python train_net.py --cfg_file configs/zju_mocap_exp/latent_xyzc_313.yaml exp_name xyzc_313 resume False white_bkgd True
    
  3. Tensorboard:
    tensorboard --logdir data/record/if_nerf
    

Citation

If you find this code useful for your research, please use the following BibTeX entry.

@inproceedings{peng2021neural,
  title={Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans},
  author={Peng, Sida and Zhang, Yuanqing and Xu, Yinghao and Wang, Qianqian and Shuai, Qing and Bao, Hujun and Zhou, Xiaowei},
  booktitle={CVPR},
  year={2021}
}
Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
a project for 3D multi-object tracking

a project for 3D multi-object tracking

155 Jan 04, 2023
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
SMD-Nets: Stereo Mixture Density Networks

SMD-Nets: Stereo Mixture Density Networks This repository contains a Pytorch implementation of "SMD-Nets: Stereo Mixture Density Networks" (CVPR 2021)

Fabio Tosi 115 Dec 26, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Customer Segmentation using RFM

Customer-Segmentation-using-RFM İş Problemi Bir e-ticaret şirketi müşterilerini segmentlere ayırıp bu segmentlere göre pazarlama stratejileri belirlem

Nazli Sener 7 Dec 26, 2021
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving

A New Open-Source Off-road Environment for Benchmark Generalization of Autonomous Driving Isaac Han, Dong-Hyeok Park, and Kyung-Joong Kim IEEE Access

13 Dec 27, 2022
Construct a neural network frame by Numpy

本项目的CSDN博客链接:https://blog.csdn.net/weixin_41578567/article/details/111482022 1. 概览 本项目主要用于神经网络的学习,通过基于numpy的实现,了解神经网络底层前向传播、反向传播以及各类优化器的原理。 该项目目前已实现的功

24 Jan 22, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Code for reproducing key results in the paper "InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets"

Status: Archive (code is provided as-is, no updates expected) InfoGAN Code for reproducing key results in the paper InfoGAN: Interpretable Representat

OpenAI 1k Dec 19, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Offline Multi-Agent Reinforcement Learning Implementations: Solving Overcooked Game with Data-Driven Method

Overcooked-AI We suppose to apply traditional offline reinforcement learning technique to multi-agent algorithm. In this repository, we implemented be

Baek In-Chang 14 Sep 16, 2022
The implementation of DeBERTa

DeBERTa: Decoding-enhanced BERT with Disentangled Attention This repository is the official implementation of DeBERTa: Decoding-enhanced BERT with Dis

Microsoft 1.2k Jan 06, 2023
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a

Tianxiang Sun 149 Jan 04, 2023
Pytorch implementations of Bayes By Backprop, MC Dropout, SGLD, the Local Reparametrization Trick, KF-Laplace, SG-HMC and more

Bayesian Neural Networks Pytorch implementations for the following approximate inference methods: Bayes by Backprop Bayes by Backprop + Local Reparame

1.4k Jan 07, 2023
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022