This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Related tags

Deep LearningISAL
Overview

Influence Selection for Active Learning (ISAL)

This project hosts the code for implementing the ISAL algorithm for object detection and image classification, as presented in our paper:

Influence Selection for Active Learning;
Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng Dai, Conghui He;
In: Proc. Int. Conf. Computer Vision (ICCV), 2021.
arXiv preprint arXiv:2108.09331

The full paper is available at: https://arxiv.org/abs/2108.09331.

Implementation based on MMDetection is included in MMDetection.

Highlights

  • Task agnostic: We evaluate ISAL in both object detection and image classification. Compared with previous methods, ISAL decreases the annotation cost at least by 12%, 12%, 3%, 13% and 16% on CIFAR10, SVHN, CIFAR100, VOC2012 and COCO, respectively.

  • Model agnostic: We evaluate ISAL with different model in object detection. On COCO dataset, with one-stage anchor-free detector FCOS, ISAL decreases the annotation cost at least by 16%. With two-stage anchor-based detector Faster R-CNN, ISAL decreases the annotation cost at least by 10%.

ISAL just needs to use the model gradients, which can be easily obtained in a neural network no matter what task is and how complex the model structure is, our proposed ISAL is task-agnostic and model-agnostic.

Required hardware

We use 4 NVIDIA V100 GPUs for object detection. We use 1 NVIDIA TITAN Xp GPUs for image classification.

Installation

Our ISAL implementation for object detection is based on mmdetection v2.4.0 with mmcv v1.1.1. Their need Pytorch version = 1.5, CUDA version = 10.1, CUDNN version = 7. We provide a docker file (./detection/Dockerfile) to prepare the environment. Once the environment is prepared, please copy all the files under the folder ./detection into the directory /mmdetection in the docker.

Our ISAL implementation for image classification is based on pycls v0.1. It need Pytorch version = 1.6, CUDA version = 10.1, CUDNN version = 7.

Training

The following command line will perform the ISAL algorithm with FCOS detector on COCO dataset, the active learning algorithm will iterate 20 steps with 4 GPUS:

bash dist_run_isal.sh /workdir /datadir \
    /mmdetection/configs/mining_experiments/ \
    fcos/fcos_r50_caffe_fpn_1x_coco_influence_function.py \
    --mining-method=influence --seed=42 --deterministic \
    --noised-score-thresh=0.1

Note that:

  1. If you want to use fewer GPUs, please change GPUS in shell script. In addition, you may need to change the samples_per_gpu in the config file to mantain the total batch size is equal to 8.
  2. The models and all inference results will be saved into /workdir.
  3. The data should be place in /datadir.
  4. If you want to run our code on VOC or your own dataset, we suggest that you should change the data format into COCO format.
  5. If you want to change the active learning iteration steps, please change the TRAIN_STEP in shell script. If you want to change the image selected by step_0 or the following steps, please change the INIT_IMG_NUM or IMG_NUM in shell script, respectively.
  6. The shell script will delete all the trained models after all the active learning steps. If you want to maintain the models please change the DELETE_MODEL in shell script.

The following command line will perform the ISAL algorithm with ResNet-18 on CIFAR10 dataset, the active learning algorithm will iterate 10 steps with 1 GPU:

bash run_isal.sh /workdir /datadir \
    pycls/configs/archive/cifar/resnet/R-18_nds_1gpu_cifar10.yaml \
    --mining-method=influence --random-seed=0

Note that:

  1. The models and all inference results will be saved into /workdir.
  2. The data should be place in /datadir.
  3. If you want to train SHVN or your own dataset, we suggest that you should change the data format into CIFAR10 format.
  4. The STEP in shell script indicates that in each active learning step the algorithm will add (1/STEP)% of the whole dataset into labeled dataset. The TRAIN_STEP indicates the total steps of active learning algorithm.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{liu2021influence,
  title={Influence selection for active learning},
  author={Liu, Zhuoming and Ding, Hao and Zhong, Huaping and Li, Weijia and Dai, Jifeng and He, Conghui},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9274--9283},
  year={2021}
}

Acknowledgments

We thank Zheng Zhu for implementing the classification pipeline. We thank Bin Wang and Xizhou Zhu for discussion and helping with the experiments. We thank Yuan Tian and Jiamin He for discussing the mathematic derivation.

License

For academic use only. For commercial use, please contact the authors.

Curved Projection Reformation

Description Assuming that we already know the image of the centerline, we want the lumen to be displayed on a plane, which requires curved projection

夜听残荷 5 Sep 11, 2022
Implementation for paper: Self-Regulation for Semantic Segmentation

Self-Regulation for Semantic Segmentation This is the PyTorch implementation for paper Self-Regulation for Semantic Segmentation, ICCV 2021. Citing SR

Dong ZHANG 30 Nov 21, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
Keras implementation of "One pixel attack for fooling deep neural networks" using differential evolution on Cifar10 and ImageNet

One Pixel Attack How simple is it to cause a deep neural network to misclassify an image if an attacker is only allowed to modify the color of one pix

Dan Kondratyuk 1.2k Dec 26, 2022
Official PyTorch implementation of RIO

Image-Level or Object-Level? A Tale of Two Resampling Strategies for Long-Tailed Detection Figure 1: Our proposed Resampling at image-level and obect-

NVIDIA Research Projects 17 May 20, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Lightweight stereo matching network based on MobileNetV1 and MobileNetV2

MobileStereoNet: Towards Lightweight Deep Networks for Stereo Matching

Cognitive Systems Research Group 139 Nov 30, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Data, notebooks, and articles associated with the RSNA AI Deep Learning Lab at RSNA 2021

RSNA AI Deep Learning Lab 2021 Intro Welcome Deep Learners! This document provides all the information you need to participate in the RSNA AI Deep Lea

RSNA 65 Dec 16, 2022
Vision-Language Pre-training for Image Captioning and Question Answering

VLP This repo hosts the source code for our AAAI2020 work Vision-Language Pre-training (VLP). We have released the pre-trained model on Conceptual Cap

Luowei Zhou 373 Jan 03, 2023
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch

NÜWA - Pytorch (wip) Implementation of NÜWA, state of the art attention network for text to video synthesis, in Pytorch. This repository will be popul

Phil Wang 463 Dec 28, 2022