This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Related tags

Deep LearningISAL
Overview

Influence Selection for Active Learning (ISAL)

This project hosts the code for implementing the ISAL algorithm for object detection and image classification, as presented in our paper:

Influence Selection for Active Learning;
Zhuoming Liu, Hao Ding, Huaping Zhong, Weijia Li, Jifeng Dai, Conghui He;
In: Proc. Int. Conf. Computer Vision (ICCV), 2021.
arXiv preprint arXiv:2108.09331

The full paper is available at: https://arxiv.org/abs/2108.09331.

Implementation based on MMDetection is included in MMDetection.

Highlights

  • Task agnostic: We evaluate ISAL in both object detection and image classification. Compared with previous methods, ISAL decreases the annotation cost at least by 12%, 12%, 3%, 13% and 16% on CIFAR10, SVHN, CIFAR100, VOC2012 and COCO, respectively.

  • Model agnostic: We evaluate ISAL with different model in object detection. On COCO dataset, with one-stage anchor-free detector FCOS, ISAL decreases the annotation cost at least by 16%. With two-stage anchor-based detector Faster R-CNN, ISAL decreases the annotation cost at least by 10%.

ISAL just needs to use the model gradients, which can be easily obtained in a neural network no matter what task is and how complex the model structure is, our proposed ISAL is task-agnostic and model-agnostic.

Required hardware

We use 4 NVIDIA V100 GPUs for object detection. We use 1 NVIDIA TITAN Xp GPUs for image classification.

Installation

Our ISAL implementation for object detection is based on mmdetection v2.4.0 with mmcv v1.1.1. Their need Pytorch version = 1.5, CUDA version = 10.1, CUDNN version = 7. We provide a docker file (./detection/Dockerfile) to prepare the environment. Once the environment is prepared, please copy all the files under the folder ./detection into the directory /mmdetection in the docker.

Our ISAL implementation for image classification is based on pycls v0.1. It need Pytorch version = 1.6, CUDA version = 10.1, CUDNN version = 7.

Training

The following command line will perform the ISAL algorithm with FCOS detector on COCO dataset, the active learning algorithm will iterate 20 steps with 4 GPUS:

bash dist_run_isal.sh /workdir /datadir \
    /mmdetection/configs/mining_experiments/ \
    fcos/fcos_r50_caffe_fpn_1x_coco_influence_function.py \
    --mining-method=influence --seed=42 --deterministic \
    --noised-score-thresh=0.1

Note that:

  1. If you want to use fewer GPUs, please change GPUS in shell script. In addition, you may need to change the samples_per_gpu in the config file to mantain the total batch size is equal to 8.
  2. The models and all inference results will be saved into /workdir.
  3. The data should be place in /datadir.
  4. If you want to run our code on VOC or your own dataset, we suggest that you should change the data format into COCO format.
  5. If you want to change the active learning iteration steps, please change the TRAIN_STEP in shell script. If you want to change the image selected by step_0 or the following steps, please change the INIT_IMG_NUM or IMG_NUM in shell script, respectively.
  6. The shell script will delete all the trained models after all the active learning steps. If you want to maintain the models please change the DELETE_MODEL in shell script.

The following command line will perform the ISAL algorithm with ResNet-18 on CIFAR10 dataset, the active learning algorithm will iterate 10 steps with 1 GPU:

bash run_isal.sh /workdir /datadir \
    pycls/configs/archive/cifar/resnet/R-18_nds_1gpu_cifar10.yaml \
    --mining-method=influence --random-seed=0

Note that:

  1. The models and all inference results will be saved into /workdir.
  2. The data should be place in /datadir.
  3. If you want to train SHVN or your own dataset, we suggest that you should change the data format into CIFAR10 format.
  4. The STEP in shell script indicates that in each active learning step the algorithm will add (1/STEP)% of the whole dataset into labeled dataset. The TRAIN_STEP indicates the total steps of active learning algorithm.

Citations

Please consider citing our paper in your publications if the project helps your research. BibTeX reference is as follows.

@inproceedings{liu2021influence,
  title={Influence selection for active learning},
  author={Liu, Zhuoming and Ding, Hao and Zhong, Huaping and Li, Weijia and Dai, Jifeng and He, Conghui},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9274--9283},
  year={2021}
}

Acknowledgments

We thank Zheng Zhu for implementing the classification pipeline. We thank Bin Wang and Xizhou Zhu for discussion and helping with the experiments. We thank Yuan Tian and Jiamin He for discussing the mathematic derivation.

License

For academic use only. For commercial use, please contact the authors.

Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
VLGrammar: Grounded Grammar Induction of Vision and Language

VLGrammar: Grounded Grammar Induction of Vision and Language

Yining Hong 27 Dec 23, 2022
Model Agnostic Interpretability for Multiple Instance Learning

MIL Model Agnostic Interpretability This repo contains the code for "Model Agnostic Interpretability for Multiple Instance Learning". Overview Executa

Joe Early 10 Dec 17, 2022
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
JAXDL: JAX (Flax) Deep Learning Library

JAXDL: JAX (Flax) Deep Learning Library Simple and clean JAX/Flax deep learning algorithm implementations: Soft-Actor-Critic (arXiv:1812.05905) Transf

Patrick Hart 4 Nov 27, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Graph WaveNet apdapted for brain connectivity analysis.

Graph WaveNet for brain network analysis This is the implementation of the Graph WaveNet model used in our manuscript: S. Wein , A. Schüller, A. M. To

4 Dec 17, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Transformers based fully on MLPs

Awesome MLP-based Transformers papers An up-to-date list of Transformers based fully on MLPs without attention! Why this repo? After transformers and

Fawaz Sammani 35 Dec 30, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023