Automatic Idiomatic Expression Detection

Related tags

Deep LearningDISC
Overview

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC)

An Idiomatic identifier that detects the presence and span of idiomatic expression in a given sentence.

Table of Contents
  1. About The Project
  2. Getting Started
  3. Usage
  4. License
  5. Contact
  6. Acknowledgements

About The Project

This project is a supervised idiomatic expression identification method. Given a sentence that contains a potentially idiomatic expression (PIE), the model identifies the span of the PIE if it is indeed used in an idiomatic sense, otherwise, the model does not identify the PIE. The identification is done via checking the smemantic compatibility. More details will be updated here (Detail description, figures, etc.).

The paper will appear in TACL.

Built With

This model is heavily relying the resources/libraries list as following:

Getting Started

The implementation here includes processed data created for MAGPIE random-split dataset. The model checkpoint that trained with MAGPIE random-split is also provided.

Prerequisites

All the dependencies for this project is listed in requirements.txt. You can install them via a standard command:

pip install -r requirements.txt

It is highly recommanded to start a conda environment with PyTorch properly installed based on your hardward before install the other requirements.

Checkpoint

To run the model with a pre-trained checkpoint, please first create a ./checkpoints folder at root. Then, please download the checkpoint from Google Drive via this Link. Please put the checkpoint in the ./checkpoints folder.

Usage

Configuration

Before running the demo or experiments (training or testing), please see the config.py which sets the configuration of the model. Some parameters there, such as MODE needs to be set appropriately for the model to run correctly. Please see comments for more details.

Demo

To start, please go through the examples provided in demo.ipynb. In there, we process a given input sentence into the model input data and then run model inference to extract the idiomatic expression (if present) from the input sentence (visualized).

Data processing

To process a dataset (such as MAGPIE) for model training and testing, please refer to ./data_processing/MAGPIE/read_comp_data_processing.ipynb. It takes a dataset with sententences and their PIE lcoations as input and generate all the necessary files for model training and inference.

Training and Testing

For training and testing, please refer to train.py and test.py. Note that test.py is used to produce evaluation scores as shown in the paper. inference.py is used to produce prediction for sentences.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Ziheng Zeng - [email protected]

Project Link: https://github.com/your_username/repo_name

Acknowledgements

[TODO]:

Add the following in README:

  • Method detail descrption
  • Method figure
  • Demo walkthrough
  • Data processing tips and instructions Add requirements.txt
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
RDA: Robust Domain Adaptation via Fourier Adversarial Attacking

RDA: Robust Domain Adaptation via Fourier Adversarial Attacking Updates 08/2021: check out our domain adaptation for video segmentation paper Domain A

17 Nov 30, 2022
Collective Multi-type Entity Alignment Between Knowledge Graphs (WWW'20)

CG-MuAlign A reference implementation for "Collective Multi-type Entity Alignment Between Knowledge Graphs", published in WWW 2020. If you find our pa

Bran Zhu 28 Dec 11, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A pyTorch implementation for AAAI-2022 paper DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Bri

Ronnie Rocket 55 Sep 14, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
PyTorch META-DATASET (Few-shot classification benchmark)

PyTorch META-DATASET (Few-shot classification benchmark) This repo contains a PyTorch implementation of meta-dataset and a unified implementation of s

Malik Boudiaf 39 Oct 31, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
Learning Domain Invariant Representations in Goal-conditioned Block MDPs

Learning Domain Invariant Representations in Goal-conditioned Block MDPs Beining Han, Chongyi Zheng, Harris Chan, Keiran Paster, Michael R. Zhang, Jim

Chongyi Zheng 3 Apr 12, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
The spiritual successor to knockknock for PyTorch Lightning, get notified when your training ends

Who's there? The spiritual successor to knockknock for PyTorch Lightning, to get a notification when your training is complete or when it crashes duri

twsl 70 Oct 06, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022