ADOP: Approximate Differentiable One-Pixel Point Rendering

Related tags

Deep LearningADOP
Overview

ADOP: Approximate Differentiable One-Pixel Point Rendering

Abstract: We present a novel point-based, differentiable neural rendering pipeline for scene refinement and novel view synthesis. The input are an initial estimate of the point cloud and the camera parameters. The output are synthesized images from arbitrary camera poses. The point cloud rendering is performed by a differentiable renderer using multi-resolution one-pixel point rasterization. Spatial gradients of the discrete rasterization are approximated by the novel concept of ghost geometry. After rendering, the neural image pyramid is passed through a deep neural network for shading calculations and hole-filling. A differentiable, physically-based tonemapper then converts the intermediate output to the target image. Since all stages of the pipeline are differentiable, we optimize all of the scene's parameters i.e. camera model, camera pose, point position, point color, environment map, rendering network weights, vignetting, camera response function, per image exposure, and per image white balance. We show that our system is able to synthesize sharper and more consistent novel views than existing approaches because the initial reconstruction is refined during training. The efficient one-pixel point rasterization allows us to use arbitrary camera models and display scenes with well over 100M points in real time.

  • The source code will be published after the paper has been accepted to a conference.

[Full Paper]

Video

Watch the video

Comments
  • Guide on exporting scene from COLMAP

    Guide on exporting scene from COLMAP

    Hi! I have some troubles exporting point cloud from COLMAP to compatible with ADOP format. Here is what I did:

    1. Autoreconstruction in COLMAP (both sparse and dense)
    2. File > Export As > as .ply
    3. preprocessed it with colmap2adop tool
    4. started training
    5. got an error that my point cloud file does not contain normal data
    6. I checked that your .ply files have normal data in headers, but I struggle to make COLMAP include it in mine
    opened by DenShlk 22
  • RAM usage when training dataset

    RAM usage when training dataset

    Through a lot of trial and error I managed to get both the ADOP viewer and trainer set up on Ubuntu 20.04.

    SETUP I'm trying to run my own dataset through the trainer to see how it is. I only have an Nvidia GTX 1070 card with 8GB of VRAM, 16GB of physical RAM but plenty of hard disk space. I've gotten to the point that the trainer runs without crashing. My dataset is 175 images, downscaled to 1000x562, converted from a ~7M point-cloud project in COLMAP.

    PROBLEM However, running the trainer seems to take up over 1GB per epoch on top of the base amount. This quickly sends my RAM usage to near full. Luckily I have a large swap partition but that too fills up over hundreds of epochs. Is this expected behaviour or a memory leak? Or could it be because my install or conda environment might be faulty? Or is it my incapable hardware? In any case, once all my swap space gets filled the program is unfortunately killed on its own.

    If tweaking any of the training config or dataset parameters could potentially fix or mitigate this issue, please do let me know. Thank you for your work on this, I find this to be a very interesting project.

    opened by ShinyLuxray 19
  • How to optimize for rendering

    How to optimize for rendering

    Hi I have a question regarding the adop_viewer. l tried the adop_viewer with pretrained models on tanks and temples dataset, it works perfectly on a laptop with a 3080 GPU (8GB VRAM) on all scenes.

    I guess you are using the 40GB A100 ini files for training these models, so I also tried training my data on a GPU with similar VRAM using exact settings from train_tank_and_temples_multi.ini. However, when I attempt to visualize my checkpoints on the 3080 GPU it shows CUDA out of memory for all my scenes.

    My question is: for rendering, did you make some optimizations to make the trained models fit in a GPU with less VRAM? Or is there certain configurations/arguments that allows the adop_viewer to take a model trained with high-end GPUs and render on low-end GPUs? Thanks in advance!

    opened by qiaosongwang 12
  • Issue with multi-camera COLMAP dataset

    Issue with multi-camera COLMAP dataset

    I have successfully trained with ADOP on scenes that use a single camera. I am having difficulty, however, with a larger dataset comprised of 882 cameras, 2/3 of which are from drone footage, the other 1/3 being a hand-held DSLR.

    COLMAP successfully generates the camera registrations and point cloud, and running colmap2adop correctly creates all the necessary files for training. I am noticing, however, that COLMAP resizes every single image, effectively generating 882 individual camera profiles. I thought at first this wouldn't necessarily be an issue, as adop_train can parse multiple cameras. I am running into this error, though:

    Assertion 'cam.w == image_size_input(0)' failed!
      File: /home/visionarymind/Downloads/ADOP/src/lib/data/Dataset.cpp:49
      Function: SceneDataTrainSampler::SceneDataTrainSampler(std::shared_ptr<SceneData>, std::vector<int>, bool, Saiga::ivec2, int, bool)
    Aborted (core dumped)
    

    I have looked at each camera.ini file, and the dimensions match each image. Would you have any idea why this error would be thrown and any way to work around it? Technically, there were only two cameras, but COLMAP resizes the images during registration.

    opened by VisionaryMind 10
  • Something worry in PointRenderer.cu & PointRenderer.h

    Something worry in PointRenderer.cu & PointRenderer.h

    2021-11-10 15-59-34屏幕截图 Can not Build CUDA object src/lib/CMakeFiles/NeuralPoints.dir/rendering/PointRenderer.cu.o

    /home/xgenie/projectfold/ADOP/src/lib/./config.h(25): error: inline specifier allowed on function declarations only

    /home/xgenie/projectfold/ADOP/src/lib/./config.h(25): error: inline specifier allowed on function declarations only

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(37): error: qualified name is not allowed

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(39): error: Function is not a template

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(39): error: not a class or struct name

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(42): error: identifier "variable_list" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(42): error: identifier "AutogradContext" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(42): error: identifier "Variable" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(42): error: identifier "Variable" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(42): error: identifier "Variable" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(43): error: identifier "Variable" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(43): error: identifier "Variable" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(43): error: identifier "IValue" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(45): error: identifier "variable_list" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(45): error: identifier "AutogradContext" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.h(45): error: identifier "variable_list" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(422): error: expected an identifier

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(422): error: identifier "K" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(422): error: expected a "]"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(422): warning: nonstandard use of "auto" to both deduce the type from an initializer and to announce a trailing return type

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(422): error: cannot deduce "auto" type (initializer required)

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(422): error: expected a ";"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(429): error: expected an identifier

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(429): error: identifier "aff" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(429): error: expected a "]"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(429): warning: nonstandard use of "auto" to both deduce the type from an initializer and to announce a trailing return type

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(429): error: cannot deduce "auto" type (initializer required)

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(429): error: expected a ";"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(621): error: expected an identifier

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(621): error: identifier "K" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(621): error: expected a "]"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(621): warning: nonstandard use of "auto" to both deduce the type from an initializer and to announce a trailing return type

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(621): error: cannot deduce "auto" type (initializer required)

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(621): error: expected a ";"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(622): error: expected an identifier

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(622): error: identifier "g_point" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(622): error: expected a "]"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(622): warning: nonstandard use of "auto" to both deduce the type from an initializer and to announce a trailing return type

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(622): error: cannot deduce "auto" type (initializer required)

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(622): error: expected a ";"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(686): error: expected an identifier

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(686): error: identifier "aff" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(686): error: expected a "]"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(686): warning: nonstandard use of "auto" to both deduce the type from an initializer and to announce a trailing return type

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(686): error: cannot deduce "auto" type (initializer required)

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(686): error: expected a ";"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(687): error: expected an identifier

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(687): error: identifier "g_point" is undefined

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(687): error: expected a "]"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(687): warning: nonstandard use of "auto" to both deduce the type from an initializer and to announce a trailing return type

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(687): error: cannot deduce "auto" type (initializer required)

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(687): error: expected a ";"

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(527): warning: variable "iw" was declared but never referenced

    /home/xgenie/projectfold/ADOP/src/lib/rendering/PointRenderer.cu(615): warning: variable "cam2" was set but never used

    opened by XGenietony 10
  • Unable to get output in the neural view

    Unable to get output in the neural view

    Hello, thanks for releasing your code!

    I tried running the program (the compilation was successful) but I am unable to obtain any output in the neural view.

    image

    This is the output I get from the terminal. I am using Ubuntu 20.04.3 LTS.

    (base) [email protected]:~/Documents/ADOP$ ./build/bin/adop_viewer --scene_dir scenes/tt_lighthouse/
    register neural render info
    Ref. 
    =============== Saiga ===============
    | Saiga Version     1.3.2           |
    | Eigen Version     3.3.91          |
    | Compiler          GNU             |
    |   -> Version      9.3.0           |
    | Build Type        RelWithDebInfo  |
    | Debug             0               |
    | Eigen Debug       0               |
    | ASAN              0               |
    | Asserts           1               |
    | Optimizations     0               |
    =====================================
    Initializing GLFW.
    Initializing GLFW sucessfull!
    Creating GLFW Window. 1920x1080 Mode=3 Fullscreen=1 Borderless=0
    =========================== OpenGL ===========================
    | OpenGL Version    3.2.0 NVIDIA 495.29.05                   | 
    | GLSL Version      1.50 NVIDIA via Cg compiler              | 
    | Renderer          NVIDIA GeForce GTX 1660 SUPER/PCIe/SSE2  | 
    | Vendor            NVIDIA Corporation                       | 
    ==============================================================
    [Renderer] Target resized to 1848x1016
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/imgui_gl.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/tone_map.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/tone_map_linear.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_extract_bright.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_downsample.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_upsample.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_combine_simple.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/copy_image.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/compute_blur.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/compute_blur.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_directional.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_directional.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_point.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_point.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_spot.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_spot.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_point.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/light_spot.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/stenciltest.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/post_processing/post_processing.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/lighting/blitDepth.glsl
    Deferred Renderer initialized. Render resolution: 1848x1016
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/post_processing/imagedisplay.glsl
    Program Initialized!
    Loading Scene scenes/tt_lighthouse/
    ====================================
    Scene Loaded
      Name       tt_lighthouse
      Path       /home/jeremy/Documents/ADOP/scenes/tt_lighthouse
      Image Size 2048x1080
      Aspect     1.8963
      K          1666.68 1661.18 1024    540     0      
      ocam       2048x1080 affine(1, 0, 0, 0, 0) cam2world() world2cam()
      ocam cut   1
      normalized center 0 0
      dist       -0.126731   0.0217503   0           0           0           0           0.000406465 0.000123456
      Points     12313620
      Colors     1
      Normals    1
      Num Images 309
      Num Cameras 1
    ====================================
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/asset/ColoredAsset.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/asset/ColoredAsset.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/asset/ColoredAsset.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/asset/LineVertexColoredAsset.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/asset/LineVertexColoredAsset.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/asset/LineVertexColoredAsset.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/tone_map.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/tone_map_linear.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_extract_bright.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_downsample.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_upsample.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/bloom_combine_simple.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/copy_image.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/compute_blur.glsl
    loading shader /home/jeremy/Documents/ADOP/External/saiga/shader/compute/compute_blur.glsl
    Found experiment experiments//2021-10-30_09:17:38_multi_scene_pose/ with 1 epochs
    Found experiment experiments//2021-10-30_09:14:22_boat/ with 1 epochs
    loading checkpoint 2021-10-30_09:17:38_multi_scene_pose -> ep0400
    Load Checkpoint render
    Total Model Params: 574651
    > Reset cuda cache
    GPU memory - Point Cloud: 295.527MB
    Pinhole Intrinsics:
    Tensor [1, 13] float cuda:0 Min/Max -0.126731 1666.68 Mean 376.289 Sum 4891.75 req-grad 1
    GPU memory - Texture: 197.018MB
    Load Checkpoint points 12313620 max uv: 12313619
    Load Checkpoint texture. Texels: 12313620 Channels: 4
    Load Checkpoint pose
    First pose before SE3(Quatwxyz(0.990142,-0.0887136,0.107975,0.00948205),Vec3(0.115149,0.198961,4.53537))
    First pose after SE3(Quatwxyz(0.990146,-0.0887041,0.107948,0.00948975),Vec3(0.114891,0.198873,4.53539))
    Load Checkpoint intrinsics
    Load Checkpoint environment_map
    Load Checkpoint vignette
    Load Checkpoint response
    Load Checkpoint exposures_values
    Using Adam texture optimzier
    optimizing texture with lr 0.08/0.004
    optimizing environment_map with lr 0.02
    optimizing response with lr 0.001
    optimizing exposure with lr 0.0005
    optimizing vignette with lr 5e-06
    optimizing poses with lr 0.005
    GPU memory - Texture: 197.018MB
    Current Best (img,cam) = (0,0) EV: -0.239136
    [Renderer] Target resized to 733x354
    [DeferredRenderer] Resize 733x354
    loading shader shader//point_render.glsl
    [Renderer] Target resized to 545x249
    [DeferredRenderer] Resize 545x249
    loading checkpoint 2021-10-30_09:17:38_multi_scene_pose -> ep0400
    Load Checkpoint render
    Total Model Params: 574651
    > Reset cuda cache
    GPU memory - Point Cloud: 295.527MB
    Pinhole Intrinsics:
    Tensor [1, 13] float cuda:0 Min/Max -0.126731 1666.68 Mean 376.289 Sum 4891.75 req-grad 1
    GPU memory - Texture: 197.018MB
    Load Checkpoint points 12313620 max uv: 12313619
    Load Checkpoint texture. Texels: 12313620 Channels: 4
    Load Checkpoint pose
    First pose before SE3(Quatwxyz(0.990146,-0.0887041,0.107948,0.00948975),Vec3(0.114891,0.198873,4.53539))
    First pose after SE3(Quatwxyz(0.990146,-0.0887041,0.107948,0.00948975),Vec3(0.114891,0.198873,4.53539))
    Load Checkpoint intrinsics
    Load Checkpoint environment_map
    Load Checkpoint vignette
    Load Checkpoint response
    Load Checkpoint exposures_values
    Using Adam texture optimzier
    optimizing texture with lr 0.08/0.004
    optimizing environment_map with lr 0.02
    optimizing response with lr 0.001
    optimizing exposure with lr 0.0005
    optimizing vignette with lr 5e-06
    optimizing poses with lr 0.005
    GPU memory - Texture: 197.018MB
    Current Best (img,cam) = (0,0) EV: -0.239136
    

    Any help would be greatly appreciated! Thank you!

    opened by mickey1356 9
  • A question about CmakeList.txt

    A question about CmakeList.txt

    Hello, I am a beginner of neural network. I want to run your program on my computer, but when I Compiling ADOP,in the command "cmake -DCMAKE_PREFIX_PATH="${CONDA}/lib/python3.8/site-packages/torch/;${CONDA}" ..",there was an error,it was "The source directory XXXXdoes not appear to contain CMakeLists.txt."How can i solve this problem?Should i write the CmakeList on myself ?Is there sth wrong in other parts ?this may easy for most people,but i sincerely hope you can answer me,thank you!

    opened by Lu-pin-an 9
  • Getting

    Getting "Loss not finite :(".

    Hello, I'm preparing a dataset of the interior of an appartment. I checked and COLMAP seems to work well, despite that there is a fair amount of white walls. After a random number of epochs, I'm getting the following (pasting only the tail of the output):

    === Epoch 81 ===
    
    Train 81 |   0% |                              |    0/1016 [00:00:0000] [0.00 e/s] 
    Train 81 |   0% |                              |    0/1016 [00:00:0000] [0.00 e/s] 
    Train 81 |   4% |#                             |   40/1016 [00:05:0000] [8.00 e/s]  Cur=212.233490 Avg=302.391327
    Train 81 |   9% |##                            |   88/1016 [00:10:0000] [8.80 e/s]  Cur=333.448730 Avg=287.600220
    Train 81 |  13% |####                          |  136/1016 [00:15:0000] [9.07 e/s]  Cur=441.840668 Avg=295.512512
    Train 81 |  18% |#####                         |  184/1016 [00:20:0000] [9.20 e/s]  Cur=379.657135 Avg=317.960571
    Train 81 |  22% |######                        |  224/1016 [00:25:0000] [8.96 e/s]  Cur=277.145172 Avg=296.512878
    Train 81 |  27% |########                      |  272/1016 [00:30:0000] [9.07 e/s]  Cur=310.707367 Avg=302.186951
    Train 81 |  31% |#########                     |  320/1016 [00:35:0000] [9.14 e/s]  Cur=34.233173 Avg=287.412201
    Train 81 |  36% |##########                    |  368/1016 [00:40:0001] [9.20 e/s]  Cur=33.885960 Avg=282.051544
    Train 81 |  41% |############                  |  416/1016 [00:45:0001] [9.24 e/s]  Cur=267.568176 Avg=272.566742
    Train 81 |  46% |#############                 |  464/1016 [00:50:0001] [9.28 e/s]  Cur=376.509857 Avg=253.497742
    Train 81 |  50% |###############               |  512/1016 [00:55:0001] [9.31 e/s]  Cur=347.692017 Avg=255.870377
    Train 81 |  55% |################              |  560/1016 [01:00:0001] [9.33 e/s]  Cur=222.076523 Avg=251.570724
    Train 81 |  60% |#################             |  608/1016 [01:05:0001] [9.35 e/s]  Cur=184.181763 Avg=259.685944
    Train 81 |  65% |###################           |  656/1016 [01:10:0002] [9.37 e/s]  Cur=30.161480 Avg=255.755127
    Train 81 |  69% |####################          |  704/1016 [01:15:0002] [9.39 e/s]  Cur=34.554646 Avg=257.362579
    Train 81 |  74% |######################        |  752/1016 [01:20:0002] [9.40 e/s]  Cur=239.453049 Avg=248.403091
    Train 81 |  78% |#######################       |  792/1016 [01:25:0002] [9.32 e/s]  Cur=33.262161 Avg=248.473404
    Train 81 |  83% |########################      |  840/1016 [01:30:0002] [9.33 e/s]  Cur=348.131836 Avg=255.551346
    Train 81 |  87% |##########################    |  888/1016 [01:35:0003] [9.35 e/s]  Cur=547.986633 Avg=261.241058
    Train 81 |  92% |###########################   |  936/1016 [01:40:0003] [9.36 e/s]  Cur=268.251221 Avg=261.505127
    Tensor [8, 4, 512, 512] float cuda:0 Min/Max 1.3125e-06 20599.7 Mean 0.520595 Sum 4.36707e+06 sdev 7.16297 req-grad 1
    Tensor [8, 4, 256, 256] float cuda:0 Min/Max 3.05836e-05 34.5411 Mean 0.535766 Sum 1.12358e+06 sdev 0.771836 req-grad 1
    Tensor [8, 4, 128, 128] float cuda:0 Min/Max 1.22896e-05 33.5968 Mean 0.552693 Sum 289770 sdev 0.658228 req-grad 1
    Tensor [8, 4, 64, 64] float cuda:0 Min/Max 0.000194362 36.972 Mean 0.557636 Sum 73090.4 sdev 0.61885 req-grad 1
    
    Tensor [8, 2, 512, 512] float cuda:0 Min/Max -1 0.999414 Mean 0.083806 Sum 351508 sdev 0.473772 req-grad 0
    Tensor [1] float cuda:0 Min/Max nan nan Mean nan Sum nan sdev nan req-grad 1
    Tensor [8, 3, 512, 512] float cuda:0 Min/Max nan nan Mean nan Sum nan sdev nan req-grad 1
    Tensor [1, 1, 512, 512] float cuda:0 Min/Max 0 1 Mean 0.878906 Sum 230400 sdev 0.326237 req-grad 0
    Tensor [8, 3, 512, 512] float cuda:0 Min/Max 0 0.956863 Mean 0.653581 Sum 4.11197e+06 sdev 0.274293 req-grad 0
    
    Scene:
    Scene Log - Texture: Tensor [4, 11655018] float cuda:0 Min/Max -22.6205 15.4725 Mean -0.8064 Sum -3.75944e+07 sdev 1.10892 req-grad 1
    Background Desc:  -0.970885 -0.863956 -0.900406 -0.882389 
    Environment map: Tensor [1, 4, 1024, 512] float cuda:0 Min/Max -6.2707 3.55126 Mean -0.982767 Sum -2.06101e+06 sdev 0.274843 req-grad 1
    Poses: Tensor [254, 8] double cuda:0 Min/Max -6.83462 8.02766 Mean 0.196939 Sum 400.181 sdev 1.62054 req-grad 0
    Vignette params:  -0.0149647 -0.00850714 -0.00492687 |   0.00124693 -0.000540384
    terminate called after throwing an instance of 'std::runtime_error'
      what():  Loss not finite :(
    

    Could it be due to the lack of enough points on the white walls? If so, how would you go about it? I'm willing to provide any data if required to better assess this.

    opened by cduguet 8
  • Something wrong with the neural view using my own data

    Something wrong with the neural view using my own data

    After using the ADOP viewer with 2 kinds of my trained data, I got the following results.

    2022-06-29 10-50-44 的屏幕截图

    2022-06-29 11-08-36 的屏幕截图

    All neural views of them are definitely wrong. Is there the same problem with me?

    By the way, when I used the ADOP viewer with the scene of "boat", there is a correct colored display in the neural view.

    opened by HandsomeFYM 5
  • Strange random color when training

    Strange random color when training

    Hi,I have some doubt of my train result on other dataset. It looks like below:( left picture is the train result, right is ground trurh) image

    I can not find out why it happens, is it caused by the rasterization method?

    Below show some of the rasterization result:( left: train render result, medium: rgb ground truth, right: rasterization mask) image

    opened by Sylvia6 4
  • How to generate a video from a given trajectory?

    How to generate a video from a given trajectory?

    Hi, I saw you provided some videos for the trained models on the different scenes. I was wondering how you generated them? Is it possible to generate them with the viewer?

    opened by vahidEttehadi 4
  • How to use the mask function?

    How to use the mask function?

    Hi, I'm wondering to use the mask to filter out the dynamic objects in my scene. But how to use the mask function?I have set the mask_dir in the dataset.ini? Should I also specify the classifaction_dir in the dataset.ini?

    opened by Gatsby23 0
  • can't move in vr_viewer using oculus quest 2

    can't move in vr_viewer using oculus quest 2

    Thank you for the excellent work. VR is being tested.

    The build is successful, but moving the VR headset does not change the rendering screen.

    If there is a solution, please share it with me.

    opened by minsoo5403 1
  • fail to run ./build/bin/adop_viewer --scene_dir scenes/boat

    fail to run ./build/bin/adop_viewer --scene_dir scenes/boat

    optimizing texture with lr 0.01/0.0002 optimizing environment_map with lr 0.002 optimizing response with lr 0.001 optimizing vignette with lr 5e-06 optimizing poses with lr 0.005 signal 11 (Segmentation fault), address is 0x31f from 0x7fbbb8c33eb5 [bt]: (0) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_core.so(_ZN5Saiga17printCurrentStackEv+0x38) [0x7fbbb7c3b468] [bt]: (1) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_core.so(+0xe5871) [0x7fbbb7c3b871] [bt]: (2) /usr/lib/x86_64-linux-gnu/libpthread.so.0(+0x14420) [0x7fbba6312420] [bt]: (3) /lib64/ld-linux-x86-64.so.2(+0x17eb5) [0x7fbbb8c33eb5] [bt]: (4) /usr/lib/x86_64-linux-gnu/libc.so.6(_dl_catch_exception+0x88) [0x7fbb96bf0928] [bt]: (5) /usr/lib/x86_64-linux-gnu/libc.so.6(_dl_catch_error+0x33) [0x7fbb96bf09f3] [bt]: (6) /usr/lib/x86_64-linux-gnu/libdl.so.2(+0x1b59) [0x7fbb96947b59] [bt]: (7) /usr/lib/x86_64-linux-gnu/libdl.so.2(dlclose+0x28) [0x7fbb96947468] [bt]: (8) /lib/x86_64-linux-gnu/libcuda.so(+0x217ec1) [0x7fbb31383ec1] [bt]: (9) /lib/x86_64-linux-gnu/libcuda.so(+0x217f33) [0x7fbb31383f33] [bt]: (10) /lib/x86_64-linux-gnu/libcuda.so(+0x2f42a2) [0x7fbb314602a2] [bt]: (11) /opt/conda/envs/adop/lib/libcudart.so.11.0(+0x1b408) [0x7fbbb6553408] [bt]: (12) /opt/conda/envs/adop/lib/libcudart.so.11.0(cudaGraphicsGLRegisterImage+0x1d1) [0x7fbbb65a34c1] [bt]: (13) /host/home//G/1workspace/NeRF-space/ADOP/build/bin/libNeuralPoints.so(_ZN5Saiga4CUDA7Interop9initImageEjN2gl6GLenumE+0x32) [0x7fbbb8b126b2] [bt]: (14) /host/home//G/1workspace/NeRF-space/ADOP/build/bin/libNeuralPoints.so(_ZN16RealTimeRenderer6RenderE9ImageInfo+0x78b) [0x7fbbb8affd2b] [bt]: (15) /host/home//G/1workspace/NeRF-space/ADOP/build/bin/libNeuralPoints.so(_ZN16RealTimeRenderer7ForwardEPN5Saiga6CameraE9ImageInfo+0x32b) [0x7fbbb8b03f5b] [bt]: (16) ./build/bin/adop_viewer(+0x21e07) [0x55e456e21e07] [bt]: (17) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_opengl.so(_ZN5Saiga14OpenGLRenderer12PrepareImguiEb+0x160) [0x7fbbb87e7510] [bt]: (18) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_opengl.so(_ZN5Saiga14OpenGLRenderer6renderERKNS_10RenderInfoE+0x5b) [0x7fbbb87e834b] [bt]: (19) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_core.so(_ZN5Saiga10WindowBase6renderEv+0x4c) [0x7fbbb7c1745c] [bt]: (20) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_core.so(_ZN5Saiga8MainLoop6renderEff+0x7a) [0x7fbbb7c1561a] [bt]: (21) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_core.so(_ZN5Saiga8MainLoop13startMainLoopENS_18MainLoopParametersE+0x25c) [0x7fbbb7c159fc] [bt]: (22) /host/home//G/1workspace/NeRF-space/ADOP/build/External/saiga/lib/libsaiga_core.so(_ZN5Saiga10WindowBase13startMainLoopENS_18MainLoopParametersE+0x2d) [0x7fbbb7c1788d] [bt]: (23) ./build/bin/adop_viewer(+0x1adfa) [0x55e456e1adfa] [bt]: (24) /usr/lib/x86_64-linux-gnu/libc.so.6(__libc_start_main+0xf3) [0x7fbb96ab4083] [bt]: (25) ./build/bin/adop_viewer(+0x1b1de) [0x55e456e1b1de] Assertion '0' failed! File: /host/home//G/1workspace/NeRF-space/ADOP/External/saiga/src/saiga/core/util/crash.cpp:109 Function: void Saiga::crit_err_hdlr(int, siginfo_t*, void*) Aborted (core dumped)

    opened by hongdayu 1
  • python setup.py install gives us an error

    python setup.py install gives us an error

    Building wheel torch-1.10.0a0+git302ee7b Traceback (most recent call last): File "setup.py", line 309, in cmake = CMake() File "/root/autodl-tmp/ADOP/External/pytorch/tools/setup_helpers/cmake.py", line 102, in init self._cmake_command = CMake._get_cmake_command() File "/root/autodl-tmp/ADOP/External/pytorch/tools/setup_helpers/cmake.py", line 126, in _get_cmake_command elif cmake is not None and CMake._get_version(cmake) >= distutils.version.LooseVersion("3.10.0"): File "/root/autodl-tmp/ADOP/External/pytorch/tools/setup_helpers/cmake.py", line 137, in _get_version return distutils.version.LooseVersion(line.strip().split(' ')[2]) AttributeError: module 'distutils' has no attribute 'version'

    opened by CHenYYff 0
  • make -j10 Failed

    make -j10 Failed

    image Thanks for your excellent work! But when I compile the adop project using "make -j10", it seems like meet errors. I'm following the steps of "compile instructions". Please help me out! Thanks~

    opened by Yukun66 0
Releases(v1.0)
Owner
Darius Rückert
Darius Rückert
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised

Michihiro Yasunaga 86 Nov 30, 2022
LaneDetectionAndLaneKeeping - Lane Detection And Lane Keeping

LaneDetectionAndLaneKeeping This project is part of my bachelor's thesis. The go

5 Jun 27, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
An OpenAI-Gym Package for Training and Testing Reinforcement Learning algorithms with OpenSim Models

Authors: Utkarsh A. Mishra and Dr. Dimitar Stanev Advisors: Dr. Dimitar Stanev and Prof. Auke Ijspeert, Biorobotics Laboratory (BioRob), EPFL Video Pl

Utkarsh Mishra 16 Dec 13, 2022
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
PyTorch implementation for "Mining Latent Structures with Contrastive Modality Fusion for Multimedia Recommendation"

MIRCO PyTorch implementation for paper: Latent Structures Mining with Contrastive Modality Fusion for Multimedia Recommendation Dependencies Python 3.

Big Data and Multi-modal Computing Group, CRIPAC 9 Dec 08, 2022
Minimal But Practical Image Classifier Pipline Using Pytorch, Finetune on ResNet18, Got 99% Accuracy on Own Small Datasets.

PyTorch Image Classifier Updates As for many users request, I released a new version of standared pytorch immage classification example at here: http:

JinTian 106 Nov 06, 2022
CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels

CoINN: Correlated-informed neural networks: a new machine learning framework to predict pressure drop in micro-channels Accurate pressure drop estimat

Alejandro Montanez 0 Jan 21, 2022
gACSON software for visualization, processing and analysis of three-dimensional electron microscopy images

gACSON gACSON software is to visualize, segment, and analyze the morphology of neurons in three-dimensional electron microscopy images. If you use any

Andrea Behanova 2 May 31, 2022
keyframes-CNN-RNN(action recognition)

keyframes-CNN-RNN(action recognition) Environment: python=3.7 pytorch=1.2 Datasets: Following the format of UCF101 action recognition. Run steps: Mo

4 Feb 09, 2022
PyTorch implementation of neural style randomization for data augmentation

README Augment training images for deep neural networks by randomizing their visual style, as described in our paper: https://arxiv.org/abs/1809.05375

84 Nov 23, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022