[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Related tags

Deep LearningMVDeTr
Overview

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper]

@inproceedings{hou2021multiview,
  title={Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)},
  author={Hou, Yunzhong and Zheng, Liang},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia (MM ’21)},
  year={2021}
}

Overview

We release the PyTorch code for MVDeTr, a state-of-the-art multiview pedestrian detector. Its superior performance should be credited to transformer architectures, updated loss terms, and view-coherent data augmentations. Moreover, MVDeTr is also very efficient and can be trained on a single RTX 2080TI. This repo also includes a simplified version of MVDet, which also runs on a single RTX 2080TI.

Content

MVDeTr Code

This repo is dedicated to the code for MVDeTr.

Dependencies

This code uses the following libraries

  • python
  • pytorch & tochvision
  • numpy
  • matplotlib
  • pillow
  • opencv-python
  • kornia

Data Preparation

By default, all datasets are in ~/Data/. We use MultiviewX and Wildtrack in this project.

Your ~/Data/ folder should look like this

Data
├── MultiviewX/
│   └── ...
└── Wildtrack/ 
    └── ...

Code Preparation

Before running the code, one should go to multiview_detector/models/ops and run bash mask.sh to build the deformable transformer (forked from Deformable DETR).

Training

In order to train classifiers, please run the following,

python main.py -d wildtrack
python main.py -d multiviewx

This should automatically return evaluation results similar to the reported 91.5% MODA on Wildtrack dataset and 93.7% MODA on MultiviewX dataset.

Architectures

This repo supports multiple architecture variants. For MVDeTr, please specify --world_feat deform_trans; for a similar fully convolutional architecture like MVDet, please specify --world_feat conv.

Loss terms

This repo supports multiple loss terms. For the focal loss variant as in MVDeTr, please specify --use_mse 0; for the MSE loss as in MVDet, please specify ----use_mse 1.

Augmentations

This repo includes support for view coherent data augmentation, which applies affine transformations onto the per-view inputs, and then invert the per-view feature maps to maintain multiview coherency.

Pre-trained models

You can download the checkpoints at this link.

Owner
Yunzhong Hou
Yunzhong Hou, a PhD student at ANU.
Yunzhong Hou
Fully-automated scripts for collecting AI-related papers

AI-Paper-collector Fully-automated scripts for collecting AI-related papers List of Conferences to crawel ACL: 21-19 (including findings) EMNLP: 21-19

Gordon Lee 776 Jan 08, 2023
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
This is an official implementation for "Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation".

Exploiting Temporal Contexts with Strided Transformer for 3D Human Pose Estimation This repo is the official implementation of Exploiting Temporal Con

Vegetabird 241 Jan 07, 2023
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
SmartSim Infrastructure Library.

Home Install Documentation Slack Invite Cray Labs SmartSim SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and Ten

Cray Labs 139 Jan 01, 2023
Codes of the paper Deformable Butterfly: A Highly Structured and Sparse Linear Transform.

Deformable Butterfly: A Highly Structured and Sparse Linear Transform DeBut Advantages DeBut generalizes the square power of two butterfly factor matr

Rui LIN 8 Jun 10, 2022
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset

YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents Ultralytics open-source research int

阿才 73 Dec 16, 2022
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
OverFeat is a Convolutional Network-based image classifier and feature extractor.

OverFeat OverFeat is a Convolutional Network-based image classifier and feature extractor. OverFeat was trained on the ImageNet dataset and participat

593 Dec 08, 2022
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023