[ACM MM 2021] Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)

Related tags

Deep LearningMVDeTr
Overview

Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation) [arXiv] [paper]

@inproceedings{hou2021multiview,
  title={Multiview Detection with Shadow Transformer (and View-Coherent Data Augmentation)},
  author={Hou, Yunzhong and Zheng, Liang},
  booktitle={Proceedings of the 29th ACM International Conference on Multimedia (MM ’21)},
  year={2021}
}

Overview

We release the PyTorch code for MVDeTr, a state-of-the-art multiview pedestrian detector. Its superior performance should be credited to transformer architectures, updated loss terms, and view-coherent data augmentations. Moreover, MVDeTr is also very efficient and can be trained on a single RTX 2080TI. This repo also includes a simplified version of MVDet, which also runs on a single RTX 2080TI.

Content

MVDeTr Code

This repo is dedicated to the code for MVDeTr.

Dependencies

This code uses the following libraries

  • python
  • pytorch & tochvision
  • numpy
  • matplotlib
  • pillow
  • opencv-python
  • kornia

Data Preparation

By default, all datasets are in ~/Data/. We use MultiviewX and Wildtrack in this project.

Your ~/Data/ folder should look like this

Data
├── MultiviewX/
│   └── ...
└── Wildtrack/ 
    └── ...

Code Preparation

Before running the code, one should go to multiview_detector/models/ops and run bash mask.sh to build the deformable transformer (forked from Deformable DETR).

Training

In order to train classifiers, please run the following,

python main.py -d wildtrack
python main.py -d multiviewx

This should automatically return evaluation results similar to the reported 91.5% MODA on Wildtrack dataset and 93.7% MODA on MultiviewX dataset.

Architectures

This repo supports multiple architecture variants. For MVDeTr, please specify --world_feat deform_trans; for a similar fully convolutional architecture like MVDet, please specify --world_feat conv.

Loss terms

This repo supports multiple loss terms. For the focal loss variant as in MVDeTr, please specify --use_mse 0; for the MSE loss as in MVDet, please specify ----use_mse 1.

Augmentations

This repo includes support for view coherent data augmentation, which applies affine transformations onto the per-view inputs, and then invert the per-view feature maps to maintain multiview coherency.

Pre-trained models

You can download the checkpoints at this link.

Owner
Yunzhong Hou
Yunzhong Hou, a PhD student at ANU.
Yunzhong Hou
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
SAFL: A Self-Attention Scene Text Recognizer with Focal Loss

SAFL: A Self-Attention Scene Text Recognizer with Focal Loss This repository implements the SAFL in pytorch. Installation conda env create -f environm

6 Aug 24, 2022
Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating

No RL No Simulation (NRNS) Official implementation of the NRNS paper: No RL, No Simulation: Learning to Navigate without Navigating NRNS is a heriarch

Meera Hahn 20 Nov 29, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Python scripts for performing lane detection using the LSTR model in ONNX

ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem

Ibai Gorordo 29 Aug 30, 2022
From this paper "SESNet: A Semantically Enhanced Siamese Network for Remote Sensing Change Detection"

SESNet for remote sensing image change detection It is the implementation of the paper: "SESNet: A Semantically Enhanced Siamese Network for Remote Se

1 May 24, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
Deep Learning Emotion decoding using EEG data from Autism individuals

Deep Learning Emotion decoding using EEG data from Autism individuals This repository includes the python and matlab codes using for processing EEG 2D

Juan Manuel Mayor Torres 12 Dec 08, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022
Powerful and efficient Computer Vision Annotation Tool (CVAT)

Computer Vision Annotation Tool (CVAT) CVAT is free, online, interactive video and image annotation tool for computer vision. It is being used by our

OpenVINO Toolkit 8.6k Jan 01, 2023
Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Advanced Deep Learning with TensorFlow 2 and Keras (Updated for 2nd Edition)

Packt 1.5k Jan 03, 2023
Matplotlib Image labeller for classifying images

mpl-image-labeller Use Matplotlib to label images for classification. Works anywhere Matplotlib does - from the notebook to a standalone gui! For more

Ian Hunt-Isaak 5 Sep 24, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Jan 01, 2023
A research toolkit for particle swarm optimization in Python

PySwarms is an extensible research toolkit for particle swarm optimization (PSO) in Python. It is intended for swarm intelligence researchers, practit

Lj Miranda 1k Dec 30, 2022
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023