Code for Domain Adaptive Video Segmentation via Temporal Consistency Regularization in ICCV 2021

Related tags

Deep LearningDA-VSN
Overview

Domain Adaptive Video Segmentation via Temporal Consistency Regularization

Updates

Paper

Domain Adaptive Video Segmentation via Temporal Consistency Regularization

Dayan Guan, Jiaxing Huang, Xiao Aoran, Shijian Lu
School of Computer Science and Engineering, Nanyang Technological University, Singapore
International Conference on Computer Vision, 2021.

If you find this code useful for your research, please cite our paper:

@inproceedings{guan2021domain,
  title={Domain adaptive video segmentation via temporal consistency regularization},
  author={Guan, Dayan and Huang, Jiaxing and Xiao, Aoran and Lu, Shijian},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={8053--8064},
  year={2021}
}

Abstract

Video semantic segmentation is an essential task for the analysis and understanding of videos. Recent efforts largely focus on supervised video segmentation by learning from fully annotated data, but the learnt models often experience clear performance drop while applied to videos of a different domain. This paper presents DA-VSN, a domain adaptive video segmentation network that addresses domain gaps in videos by temporal consistency regularization (TCR) for consecutive frames of target-domain videos. DA-VSN consists of two novel and complementary designs. The first is cross-domain TCR that guides the prediction of target frames to have similar temporal consistency as that of source frames (learnt from annotated source data) via adversarial learning. The second is intra-domain TCR that guides unconfident predictions of target frames to have similar temporal consistency as confident predictions of target frames. Extensive experiments demonstrate the superiority of our proposed domain adaptive video segmentation network which outperforms multiple baselines consistently by large margins.

Installation

  1. Conda enviroment:
conda create -n DA-VSN python=3.6
conda activate DA-VSN
conda install -c menpo opencv
pip install torch==1.2.0 torchvision==0.4.0
  1. Clone the ADVENT:
git clone https://github.com/valeoai/ADVENT.git
pip install -e ./ADVENT
  1. Clone the repo:
git clone https://github.com/Dayan-Guan/DA-VSN.git
pip install -e ./DA-VSN

Preparation

  1. Dataset:
DA-VSN/data/Cityscapes/                       % Cityscapes dataset root
DA-VSN/data/Cityscapes/leftImg8bit_sequence   % leftImg8bit_sequence_trainvaltest
DA-VSN/data/Cityscapes/gtFine                 % gtFine_trainvaltest
DA-VSN/data/Viper/                            % VIPER dataset root
DA-VSN/data/Viper/train/img                   % Modality: Images; Frames: *[0-9]; Sequences: 00-77; Format: jpg
DA-VSN/data/Viper/train/cls                   % Modality: Semantic class labels; Frames: *0; Sequences: 00-77; Format: png
DA-VSN/data/SynthiaSeq/                      % SYNTHIA-Seq dataset root
DA-VSN/data/SynthiaSeq/SEQS-04-DAWN          % SYNTHIA-SEQS-04-DAWN
  1. Pre-trained models: Download pre-trained models and put in DA-VSN/pretrained_models

Optical Flow Estimation

  • For quick preparation: Download the optical flow estimated from Cityscapes-Seq validation set here and unzip in DA-VSN/data
  1. Clone the flownet2-pytorch:
git clone https://github.com/NVIDIA/flownet2-pytorch.git
  1. Download pre-trained FlowNet2 and put in flownet2-pytorch/pretrained_models
DA-VSN/data/Cityscapes_val_optical_flow_scale512/  % unzip Cityscapes_val_optical_flow_scale512.zip
  1. Use the flownet2-pytorch to estimate optical flow

Evaluation on Pretrained Models

  • VIPER → Cityscapes-Seq:
cd DA-VSN/davsn/scripts
python test.py --cfg configs/davsn_viper2city_pretrained.yml
  • SYNTHIA-Seq → Cityscapes-Seq:
python test.py --cfg configs/davsn_syn2city_pretrained.yml

Training and Testing

  • VIPER → Cityscapes-Seq:
cd DA-VSN/davsn/scripts
python train.py --cfg configs/davsn_viper2city.yml
python test.py --cfg configs/davsn_viper2city.yml
  • SYNTHIA-Seq → Cityscapes-Seq:
python train.py --cfg configs/davsn_syn2city.yml
python test.py --cfg configs/davsn_syn2city.yml

Acknowledgements

This codebase is heavily borrowed from ADVENT and flownet2-pytorch.

Contact

If you have any questions, please contact: [email protected]

Comments
  • Optical flow is not used for propagating

    Optical flow is not used for propagating

    Hi, author. I have two questions. The first is I find that you didn't use flow to propogate previous frame to current frame. You just use it as a limitation that the pixel appeared in both cf and kf will be retained. This is unreasonable. image And I refine the code using resample2D to warp kf to cf, but the result only improve a little.

    The second question is that I try to train DAVSN for 3 times on 1080Ti and 2080Ti following the setting you gave, but I only get 46 mIoU which is 2 point less than you.

    opened by EDENpraseHAZARD 5
  • Question on Synthia-seq dataset

    Question on Synthia-seq dataset

    Dear authors,

    Thank you for your great work. I have several questions about the synthia-seq->cityscape-seq adaptation. The first one is about the scale of training data. It seems like compared with the VIPER dataset, synthia-seq only contains one labeled video with 850 frames in total. Is that true? And the second question is that 11 classes are reported the Table 4, but in the dataloader of synthia-seq, 12 classes are used. So, I'm not sure whether the fence class is considered during adaptation or not. https://github.com/Dayan-Guan/DA-VSN/blob/d110ff70dacec4156a3787eb49e7f2448dfb91a5/davsn/dataset/SynthiaSeq.py#L11

    Thanks in advance for your help!

    opened by xyIsHere 3
  • Details of SYNTHIA-Seq dataset

    Details of SYNTHIA-Seq dataset

    Hi author, I have downloaded SYNTHIA-Seq, but I found there are 'Stereo_Left' and 'Stereo_Right' folders. And each contains 'Omni_B', 'Omni_F', 'Omni_L' and 'Omni_R'. I wonder which one is used for training.

    opened by EDENpraseHAZARD 2
  • Could you please provide 'estimated_optical_flow' for training DA-VSN

    Could you please provide 'estimated_optical_flow' for training DA-VSN

    Hi @Dayan-Guan , thank you for open-sourcing your work!

    I am trying to follow this work. For training DA-VSN from scratch, the optical flows (for the 3 datasets used in your paper) estimated by FlowNet2 are needed. However, the instruction in your README only includes the evaluation part. I also see from the recent issues that you have provided the code and more instructions for the training part. But the code is not a complete one I guess so I cannot generate the optical flows with it.

    Could you please provide your generated optical flows for all 3 datasets used in your paper? It would save us time. Or could you please have a look again at the provided 'Code_for_optical_flow_estimation'? So that it is runnable for generating optical flows on our own.

    Thanks in advance!

    Regards

    opened by ldkong1205 1
  • In train_video_UDA.py, line 251, trg_ prob_ warp = warp_ bilinear(trg_prob, trg_flow_warp), if the image flips, but the optical flow does not flip

    In train_video_UDA.py, line 251, trg_ prob_ warp = warp_ bilinear(trg_prob, trg_flow_warp), if the image flips, but the optical flow does not flip

    Hello! I really enjoy reading your work!! At the same time, I encountered a problem in the operation of train_video_UDA.py

    In line 251 trg_ prob_ warp = warp_ bilinear(trg_prob, trg_flow_warp), Variable trg_prob is the prediction of trg_img_b_wk, and trg_img_b_wk is obtained by trg_img_b based on a certain probability of flip, but trg_flow_warp does not seem to be flipped, We consider such a situation, If trg_img_b_wk is fliped, trg_flow_warp is not flipped, Then trg_prob_warp and trg_img_d_st do not seem consistent? Because the image flips, but the optical flow does not flip. Although the trg_pl in line 256~258 is fliped.

    Chinese discription of my question: 在第251行, trg_ prob_ warp = warp_ bilinear(trg_prob, trg_flow_warp), 变量trg_prob是trg_img_b_wk的语义分割预测, 而trg_img_b_wk是由trg_img_b根据一定概率flip得到的, 但 trg_flow_warp似乎没有进行翻转, 我们考虑这样一种情况, 如果trg_img_b_wk经过了flip处理, 那么trg_prob_warp和trg_img_d_st的语义貌似不是一致的?因为图像flip了但光流图没有flip。 尽管在第256行对trg_pl进行了flip操作

    opened by zhe-juanz 0
  • Some questions about data loading

    Some questions about data loading

    Hi, This is a very enlightening work!!! @xing0047 @Dayan-Guan I want to ask a question~

    When I use./TPS/tps/scripts/train.py to read SynthiaSeq or ViperSeq data, I debug the code and find the following phenomena:

    I tried to print some variables of __ getitem__ () ,

    When the shuffle of source_loader = data.DataLoader() is set to False, and the batch_size=cfg.TRAIN.BATCH_SIZE_SOURCE is set to 1,

    1. It is found that although the batch_ Size=1, but 4 pictures and the first frame corresponding to them are loaded at one time, Instead of 1 picture and the previous frame.

    2. At the same time, it is found that 4 loaded pictures are disordered, such as 2-1-3-4, rather than 1-2-3-4, it seems to violate the settings of shuffle.

    Could you please kindly explain my doubt? Thank you very much!!

    The print code are as follows:

    111

    The print results are as follows,which the order of each run of print is different:

    ---index--- 1 ---index--- 0 ---index--- 2 img_file tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000002.png label_file tps/data/SynthiaSeq/SEQS-04-DAWN/label/000002.png ---index--- 3 img_file tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000001.png label_file tps/data/SynthiaSeq/SEQS-04-DAWN/label/000001.png img_file tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000003.png label_file tps/data/SynthiaSeq/SEQS-04-DAWN/label/000003.png img_file tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000004.png label_file tps/data/SynthiaSeq/SEQS-04-DAWN/label/000004.png image_kf tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000003.png image_kf tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000002.png image_kf tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000001.png image_kf tps/data/SynthiaSeq/SEQS-04-DAWN/rgb/000000.png label_kf tps/data/SynthiaSeq/SEQS-04-DAWN/label/000003.png label_kf tps/data/SynthiaSeq/SEQS-04-DAWN/label/000002.png label_kf tps/data/SynthiaSeq/SEQS-04-DAWN/label/000001.png label_kf tps/data/SynthiaSeq/SEQS-04-DAWN/label/000000.png

    opened by zhe-juanz 0
  • Regarding Synthia-Seq Dataset

    Regarding Synthia-Seq Dataset

    I really enjoyed reading your work. I have a question regarding the synthia-seq dataset. In the paper you mention that you have used 8000 synthesized video frames, but in the github the Synthia-Seq Dawn contain only 850 images. Can you please clarify this ambiguity. Thank you. image

    opened by Ihsan149 0
  • Optical flow for training

    Optical flow for training

    Thanks for your great job! I want to train DA-VSN, but I don't know how to get Estimated_optical_flow_Viper_train, Estimated_optical_flow_Cityscapes-Seq_train. I didn't find the detail about optical flow from readme or paper.

    opened by EDENpraseHAZARD 11
High-Resolution 3D Human Digitization from A Single Image.

PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization (CVPR 2020) News: [2020/06/15] Demo with Google Colab (i

Meta Research 8.4k Dec 29, 2022
Demonstrates how to divide a DL model into multiple IR model files (division) and introduce a simplest way to implement a custom layer works with OpenVINO IR models.

Demonstration of OpenVINO techniques - Model-division and a simplest-way to support custom layers Description: Model Optimizer in Intel(r) OpenVINO(tm

Yasunori Shimura 12 Nov 09, 2022
这是一个mobilenet-yolov4-lite的库,把yolov4主干网络修改成了mobilenet,修改了Panet的卷积组成,使参数量大幅度缩小。

YOLOV4:You Only Look Once目标检测模型-修改mobilenet系列主干网络-在Keras当中的实现 2021年2月8日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map一般可以得到提升。

Bubbliiiing 65 Dec 01, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
IPATool-py: download ipa easily

IPATool-py Python version of IPATool! Installation pip3 install -r requirements.txt Usage Quickstart: download app with specific bundleId into DIR: p

159 Dec 30, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
a morph transfer UGATIT for image translation.

Morph-UGATIT a morph transfer UGATIT for image translation. Introduction 中文技术文档 This is Pytorch implementation of UGATIT, paper "U-GAT-IT: Unsupervise

55 Nov 14, 2022
State-Relabeling Adversarial Active Learning

State-Relabeling Adversarial Active Learning Code for SRAAL [2020 CVPR Oral] Requirements torch = 1.6.0 numpy = 1.19.1 tqdm = 4.31.1 AL Results The

10 Jul 14, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
[TPDS'21] COSCO: Container Orchestration using Co-Simulation and Gradient Based Optimization for Fog Computing Environments

COSCO Framework COSCO is an AI based coupled-simulation and container orchestration framework for integrated Edge, Fog and Cloud Computing Environment

imperial-qore 39 Dec 25, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022
NeuralForecast is a Python library for time series forecasting with deep learning models

NeuralForecast is a Python library for time series forecasting with deep learning models. It includes benchmark datasets, data-loading utilities, evaluation functions, statistical tests, univariate m

Nixtla 1.1k Jan 03, 2023
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
This repo contains the code and data used in the paper "Wizard of Search Engine: Access to Information Through Conversations with Search Engines"

Wizard of Search Engine: Access to Information Through Conversations with Search Engines by Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hongtao Tian, Zh

19 Oct 27, 2022
PyTorch implementation of normalizing flow models

PyTorch implementation of normalizing flow models

Vincent Stimper 242 Jan 02, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
A framework for joint super-resolution and image synthesis, without requiring real training data

SynthSR This repository contains code to train a Convolutional Neural Network (CNN) for Super-resolution (SR), or joint SR and data synthesis. The met

83 Jan 01, 2023