The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Overview

Joint t-sne

This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

abstract:

We present Joint t-Stochastic Neighbor Embedding (Joint t-SNE), a technique to generate comparable projections of multiple high-dimensional datasets. Although t-SNE has been widely employed to visualize high-dimensional datasets from various domains, it is limited to projecting a single dataset. When a series of high-dimensional datasets, such as datasets changing over time, is projected independently using t-SNE, misaligned layouts are obtained. Even items with identical features across datasets are projected to different locations, making the technique unsuitable for comparison tasks. To tackle this problem, we introduce edge similarity, which captures the similarities between two adjacent time frames based on the Graphlet Frequency Distribution (GFD). We then integrate a novel loss term into the t-SNE loss function, which we call vector constraints, to preserve the vectors between projected points across the projections, allowing these points to serve as visual landmarks for direct comparisons between projections. Using synthetic datasets whose ground-truth structures are known, we show that Joint t-SNE outperforms existing techniques, including Dynamic t-SNE, in terms of local coherence error, Kullback-Leibler divergence, and neighborhood preservation. We also showcase a real-world use case to visualize and compare the activation of different layers of a neural network.

Environment:

How to use:

  1. Put the directory of your data sequence, e.g. "YOUR_DATA" in ./data. There are several requirements on the format and organization of your data:

    • Each data frame is named as f_i.txt, where i is the time step/index of this data frame in the sequence.
    • The j th row of the data frame contains both the feature vector and label of the j th item, which is seperated by \tab. The label is at the last position.
    • All data frames must have the same number of rows, and the the same item is at the same row in different data frames to compute the node similarities one by one.
  2. Create a configuration file, e.g. "YOUR_DATA.json" in ./config, which is organized as a json structure.

{
  "algo": {
    "k_closest_count": 3,
    "perplexity": 70,
    "bfs_level": 1,
    "gamma": 0.1
  },
  "thesne": {
    "data_name": "YOUR_DATA",
    "pts_size": 2000,
    "norm": false,
    "data_ids": [1, 3, 6, 9],
    "data_dims": [100, 100, 100, 100, 100, 100, 100, 100, 100, 100],
    "data_titles": [
      "t=0",
      "t=1",
      "t=2",
      "t=3",
      "t=4",
      "t=5",
      "t=6",
      "t=7",
      "t=8",
      "t=9"
    ]
  }
}

In this file, algo represents the hyperparamters of our algorithm except for bfs_level, which always equals to 1. thesne contains the information of the input data. Please remember that data_name must be consistent with the directory name in the previous step.

  1. Create a shell script, e.g. "YOUR_DATA.sh" in ./scripts as below:
# !/bin/bash
# 1. specify the path of the configuration file
config_path="config/YOUR_DATA.json"

workdir=$(pwd)

# 2. build knn graph for each data frame
python3 codes/graphBuild/run.py $config_path

# 3. compute edge similarities between each two adjacent data frames
buildDir="codes/graphSim/build"
if [ ! -d $buildDir ]; then
    mkdir $buildDir
    echo "create directory ${buildDir}"
else
    echo "directory ${buildDir} already exists."
fi
cd $buildDir
qmake ../
make

cd $workdir

# bin is dependent on your operating system
bin=$buildDir/graphSim.app/Contents/MacOS/graphSim
$bin $config_path


# 4. run t-sne optimization
python3 codes/thesne/run.py $config_path

There are several places you should pay attention to.

  • Again, config_path must be consitent with the name of configuration file in the previous step

  • bin is dependent on your operating system. If you use linux, you probably should change it to

      bin=$buildDir/graphSim
    
  1. In root directory, type
sh scripts/YOUR_DATA.sh

The final embeddings will be generated in ./results/YOUR_DATA.

  1. Optionally, you can use codes/draw/run.py to plot the embeddings.

Example:

You can find an example in ./scripts/10_cluster_contract.sh.

Owner
IDEAS Lab
Our mission is to enhance people's ability to understand and communicate data through the design of automated visualization and visual analytics systems.
IDEAS Lab
Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm.

REDQ source code Author's PyTorch implementation of Randomized Ensembled Double Q-Learning (REDQ) algorithm. Paper link: https://arxiv.org/abs/2101.05

109 Dec 16, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Super-Fast-Adversarial-Training - A PyTorch Implementation code for developing super fast adversarial training

Super-Fast-Adversarial-Training This is a PyTorch Implementation code for develo

LBK 26 Dec 02, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Breast Cancer Detection šŸ”¬ ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Generative Adversarial Networks for High Energy Physics extended to a multi-layer calorimeter simulation

CaloGAN Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks. This repository c

Deep Learning for HEP 101 Nov 13, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Code for "MetaMorph: Learning Universal Controllers with Transformers", Gupta et al, ICLR 2022

MetaMorph: Learning Universal Controllers with Transformers This is the code for the paper MetaMorph: Learning Universal Controllers with Transformers

Agrim Gupta 50 Jan 03, 2023
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
git怊Beta R-CNN: Looking into Pedestrian Detection from Another Perspective怋(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

58 Jan 06, 2023
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022