决策树分类与回归模型的实现和可视化

Overview

DecisionTree

决策树分类与回归模型,以及可视化

ID3

ID3决策树是最朴素的决策树分类器:

  • 无剪枝
  • 只支持离散属性
  • 采用信息增益准则

data.py中,我们记录了一个小的西瓜数据集,用于离散属性的二分类任务。我们可以像下面这样训练一个ID3决策树分类器:

from ID3 import ID3Classifier
from data import load_watermelon2
import numpy as np

X, y = load_watermelon2(return_X_y=True) # 函数参数仿照sklearn.datasets
model = ID3Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树是正确的。

C4.5

C4.5决策树分类器对ID3进行了改进:

  • 用信息增益率的启发式方法来选择划分特征;
  • 能够处理离散型和连续型的属性类型,即将连续型的属性进行离散化处理;
  • 剪枝;
  • 能够处理具有缺失属性值的训练数据;

我们实现了前两点,以及第三点中的预剪枝功能(超参数)

data.py中还有一个连续离散特征混合的西瓜数据集,我们用它来测试C4.5决策树的效果:

from C4_5 import C4_5Classifier
from data import load_watermelon3
import numpy as np

X, y = load_watermelon3(return_X_y=True) # 函数参数仿照sklearn.datasets
model = C4_5Classifier()
model.fit(X, y)
pred = model.predict(X)
print(np.mean(pred == y))

输出1.0,说明我们生成的决策树正确.

CART

分类

CART(Classification and Regression Tree)是C4.5决策树的扩展,支持分类和回归。CART分类树算法使用基尼系数选择特征,此外对于离散特征,CART决策树在每个节点二分划分,缓解了过拟合。

这里我们用sklearn中的鸢尾花数据集测试:

from CART import CARTClassifier
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

X, y = load_iris(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTClassifier()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(accuracy_score(test_y, pred))

准确率95.55%。

回归

CARTRegressor类实现了决策树回归,以sklearn的波士顿数据集为例:

from CART import CARTRegressor
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error

X, y = load_boston(return_X_y=True)
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model = CARTRegressor()
model.fit(train_X, train_y)
pred = model.predict(test_X)
print(mean_squared_error(test_y, pred))

输出26.352171052631576,sklearn决策树回归的Baseline是22.46,性能近似,说明我们的实现正确。

决策树绘制

分类树

利用python3的graphviz第三方库和Graphviz(需要安装),我们可以将决策树可视化:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

X, y = load_iris(return_X_y=True)
model = CARTClassifier()
model.fit(X, y)
tree_plot(model)

运行,文件夹中生成tree.png

iris_tree

如果提供了特征的名词和标签的名称,决策树会更明显:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_iris

iris = load_iris()
model = CARTClassifier()
model.fit(iris.data, iris.target)
tree_plot(model,
          filename="tree2",
          feature_names=iris.feature_names,
          target_names=iris.target_names)

iris_tree2

绘制西瓜数据集2对应的ID3决策树:

from plot import tree_plot
from ID3 import ID3Classifier
from data import load_watermelon2

watermelon = load_watermelon2()
model = ID3Classifier()
model.fit(watermelon.data, watermelon.target)
tree_plot(
    model,
    filename="tree",
    font="SimHei",
    feature_names=watermelon.feature_names,
    target_names=watermelon.target_names,
)

这里要自定义字体,否则无法显示中文:

watermelon

回归树

用同样的方法,我们可以进行回归树的绘制:

from plot import tree_plot
from ID3 import ID3Classifier
from sklearn.datasets import load_boston

boston = load_boston()
model = ID3Classifier(max_depth=5)
model.fit(boston.data, boston.target)
tree_plot(
    model,
    feature_names=boston.feature_names,
)

由于生成的回归树很大,我们限制最大深度再绘制:

regression

调参

CART和C4.5都是有超参数的,我们让它们作为sklearn.base.BaseEstimator的派生类,借助sklearn的GridSearchCV,就可以实现调参:

from plot import tree_plot
from CART import CARTClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split, GridSearchCV

wine = load_wine()
train_X, test_X, train_y, test_y = train_test_split(
    wine.data,
    wine.target,
    train_size=0.7,
)
model = CARTClassifier()
grid_param = {
    'max_depth': [2, 4, 6, 8, 10],
    'min_samples_leaf': [1, 3, 5, 7],
}

search = GridSearchCV(model, grid_param, n_jobs=4, verbose=5)
search.fit(train_X, train_y)
best_model = search.best_estimator_
print(search.best_params_, search.best_estimator_.score(test_X, test_y))
tree_plot(
    best_model,
    feature_names=wine.feature_names,
    target_names=wine.target_names,
)

输出最优参数和最优模型在测试集上的表现:

{'max_depth': 4, 'min_samples_leaf': 3} 0.8518518518518519

绘制对应的决策树:

wine

剪枝

在ID3和CART回归中加入了REP剪枝,C4.5则支持了PEP剪枝。

对IRIS数据集训练后的决策树进行PEP剪枝:

iris = load_iris()
model = C4_5Classifier()
X, y = iris.data, iris.target
train_X, test_X, train_y, test_y = train_test_split(X, y, train_size=0.7)
model.fit(train_X, train_y)
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/pre_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names)
model.pep_pruning()
print(model.score(test_X, test_y))
tree_plot(model,
          filename="src/post_prune",
          feature_names=iris.feature_names,
          target_names=iris.target_names,
)

剪枝前后的准确率分别为97.78%,100%,即泛化性能的提升:

prepre

Owner
Welt Xing
Undergraduate in AI school, Nanjing University. Main interest(for now): Machine learning and deep learning.
Welt Xing
This repository demonstrates the usage of hover to understand and supervise a machine learning task.

Hover Example Apps (works out-of-the-box on Binder) This repository demonstrates the usage of hover to understand and supervise a machine learning tas

Pavel 43 Dec 03, 2021
Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters

Skforecast is a python library that eases using scikit-learn regressors as multi-step forecasters. It also works with any regressor compatible with the scikit-learn API (pipelines, CatBoost, LightGBM

Joaquín Amat Rodrigo 297 Jan 09, 2023
Microsoft 5.6k Jan 07, 2023
Python package for concise, transparent, and accurate predictive modeling

Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use. 📚 docs • 📖 demo notebooks Modern

Chandan Singh 983 Jan 01, 2023
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching.

A linear equation solver using gaussian elimination. Implemented for fun and learning/teaching. The solver will solve equations of the type: A can be

Sanjeet N. Dasharath 3 Feb 15, 2022
Python-based implementations of algorithms for learning on imbalanced data.

ND DIAL: Imbalanced Algorithms Minimalist Python-based implementations of algorithms for imbalanced learning. Includes deep and representational learn

DIAL | Notre Dame 220 Dec 13, 2022
Fit interpretable models. Explain blackbox machine learning.

InterpretML - Alpha Release In the beginning machines learned in darkness, and data scientists struggled in the void to explain them. Let there be lig

InterpretML 5.2k Jan 09, 2023
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Official code for HH-VAEM

HH-VAEM This repository contains the official Pytorch implementation of the Hierarchical Hamiltonian VAE for Mixed-type Data (HH-VAEM) model and the s

Ignacio Peis 8 Nov 30, 2022
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2021 Links Doc

Sebastian Raschka 4.2k Dec 29, 2022
🤖 ⚡ scikit-learn tips

🤖 ⚡ scikit-learn tips New tips are posted on LinkedIn, Twitter, and Facebook. 👉 Sign up to receive 2 video tips by email every week! 👈 List of all

Kevin Markham 1.6k Jan 03, 2023
Python implementation of the rulefit algorithm

RuleFit Implementation of a rule based prediction algorithm based on the rulefit algorithm from Friedman and Popescu (PDF) The algorithm can be used f

Christoph Molnar 326 Jan 02, 2023
Quantum Machine Learning

The Machine Learning package simply contains sample datasets at present. It has some classification algorithms such as QSVM and VQC (Variational Quantum Classifier), where this data can be used for e

Qiskit 364 Jan 08, 2023
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022