Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

Overview

FAC-Net

Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization
Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng Li (CUHK)

Paper: arXiv, ICCV

Overview

We argue that existing methods for weakly-supervised temporal activity localization cannot guarantee the foreground-action consistency, that is, the foreground and actions are mutually inclusive. Therefore, we propose a novel method named Foreground-Action Consistency Network (FAC-Net) to address this issue. The experimental results on THUMOS14 are as below.

Method \ mAP(%) @0.1 @0.2 @0.3 @0.4 @0.5 @0.6 @0.7 AVG
UntrimmedNet 44.4 37.7 28.2 21.1 13.7 - - -
STPN 52.0 44.7 35.5 25.8 16.9 9.9 4.3 27.0
W-TALC 55.2 49.6 40.1 31.1 22.8 - 7.6 -
AutoLoc - - 35.8 29.0 21.2 13.4 5.8 -
CleanNet - - 37.0 30.9 23.9 13.9 7.1 -
MAAN 59.8 50.8 41.1 30.6 20.3 12.0 6.9 31.6
CMCS 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.4
BM 60.4 56.0 46.6 37.5 26.8 17.6 9.0 36.3
RPN 62.3 57.0 48.2 37.2 27.9 16.7 8.1 36.8
DGAM 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0
TSCN 63.4 57.6 47.8 37.7 28.7 19.4 10.2 37.8
EM-MIL 59.1 52.7 45.5 36.8 30.5 22.7 16.4 37.7
BaS-Net 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.3
A2CL-PT 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.8
ACM-BANet 64.6 57.7 48.9 40.9 32.3 21.9 13.5 39.9
HAM-Net 65.4 59.0 50.3 41.1 31.0 20.7 11.1 39.8
UM 67.5 61.2 52.3 43.4 33.7 22.9 12.1 41.9
FAC-Net (Ours) 67.6 62.1 52.6 44.3 33.4 22.5 12.7 42.2

Prerequisites

Recommended Environment

  • Python 3.6
  • Pytorch 1.2
  • Tensorboard Logger
  • CUDA 10.0

Data Preparation

  1. Prepare THUMOS'14 dataset.

    • We recommend using features and annotations provided by this repo.
  2. Place the features and annotations inside a dataset/Thumos14reduced/ folder.

Usage

Training

You can easily train the model by running the provided script.

  • Refer to train_options.py. Modify the argument of dataset-root to the path of your dataset folder.

  • Run the command below.

$ python train_main.py --run-type 0 --model-id 1   # rgb stream
$ python train_main.py --run-type 1 --model-id 2   # flow stream

Make sure you use different model-id for RGB and optical flow. Models are saved in ./ckpt/dataset_name/model_id/

Evaulation

The trained model can be found here. Please change the file name to xxx.pkl (e.g., 100.pkl) and put it into ./ckpt/dataset_name/model_id/. You can evaluate the model referring to the two stream evaluation process.

Single stream evaluation

  • Run the command below.
$ python train_main.py --pretrained --run-type 2 --model-id 1 --load-epoch 100  # rgb stream
$ python train_main.py --pretrained --run-type 3 --model-id 2 --load-epoch 100  # flow stream

load-epoch refers to the epoch of the best model. The best model would not always occur at 100 epoch, please refer to the log in the same folder of saved models to set the load epoch of the best model. Make sure you set the right model-id that corresponds to the model-id during training.

Two stream evaluation

  • Run the command below using our provided models.
$ python test_main.py --rgb-model-id 1 --flow-model-id 2 --rgb-load-epoch 100 --flow-load-epoch 100

References

We referenced the repos below for the code.

If you find this code useful, please cite our paper.

@InProceedings{Huang_2021_ICCV,
    author    = {Huang, Linjiang and Wang, Liang and Li, Hongsheng},
    title     = {Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {8002-8011}
}

Contact

If you have any question or comment, please contact the first author of the paper - Linjiang Huang ([email protected]).

Implementing DeepMind's Fast Reinforcement Learning paper

Fast Reinforcement Learning This is a repo where I implement the algorithms in the paper, Fast reinforcement learning with generalized policy updates.

Marcus Chiam 6 Nov 28, 2022
EMNLP 2020 - Summarizing Text on Any Aspects

Summarizing Text on Any Aspects This repo contains preliminary code of the following paper: Summarizing Text on Any Aspects: A Knowledge-Informed Weak

Bowen Tan 35 Nov 14, 2022
Husein pet projects in here!

project-suka-suka Husein pet projects in here! List of projects mysejahtera-density. Generate resolution points using meshgrid and request each points

HUSEIN ZOLKEPLI 47 Dec 09, 2022
Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Neural Networks.

Dynamic-Graphs-Construction Official Codes for Graph Modularity:Towards Understanding the Cross-Layer Transition of Feature Representations in Deep Ne

11 Dec 14, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
Can we learn gradients by Hamiltonian Neural Networks?

Can we learn gradients by Hamiltonian Neural Networks? This project was carried out as part of the Optimization for Machine Learning course (CS-439) a

2 Aug 22, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
An index of algorithms for learning causality with data

awesome-causality-algorithms An index of algorithms for learning causality with data. Please cite our survey paper if this index is helpful. @article{

Ruocheng Guo 2.3k Jan 08, 2023
AugLiChem - The augmentation library for chemical systems.

AugLiChem Welcome to AugLiChem! The augmentation library for chemical systems. This package supports augmentation for both crystaline and molecular sy

BaratiLab 17 Jan 08, 2023
This Jupyter notebook shows one way to implement a simple first-order low-pass filter on sampled data in discrete time.

How to Implement a First-Order Low-Pass Filter in Discrete Time We often teach or learn about filters in continuous time, but then need to implement t

Joshua Marshall 4 Aug 24, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023