Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization

Overview

FAC-Net

Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization
Linjiang Huang (CUHK), Liang Wang (CASIA), Hongsheng Li (CUHK)

Paper: arXiv, ICCV

Overview

We argue that existing methods for weakly-supervised temporal activity localization cannot guarantee the foreground-action consistency, that is, the foreground and actions are mutually inclusive. Therefore, we propose a novel method named Foreground-Action Consistency Network (FAC-Net) to address this issue. The experimental results on THUMOS14 are as below.

Method \ mAP(%) @0.1 @0.2 @0.3 @0.4 @0.5 @0.6 @0.7 AVG
UntrimmedNet 44.4 37.7 28.2 21.1 13.7 - - -
STPN 52.0 44.7 35.5 25.8 16.9 9.9 4.3 27.0
W-TALC 55.2 49.6 40.1 31.1 22.8 - 7.6 -
AutoLoc - - 35.8 29.0 21.2 13.4 5.8 -
CleanNet - - 37.0 30.9 23.9 13.9 7.1 -
MAAN 59.8 50.8 41.1 30.6 20.3 12.0 6.9 31.6
CMCS 57.4 50.8 41.2 32.1 23.1 15.0 7.0 32.4
BM 60.4 56.0 46.6 37.5 26.8 17.6 9.0 36.3
RPN 62.3 57.0 48.2 37.2 27.9 16.7 8.1 36.8
DGAM 60.0 54.2 46.8 38.2 28.8 19.8 11.4 37.0
TSCN 63.4 57.6 47.8 37.7 28.7 19.4 10.2 37.8
EM-MIL 59.1 52.7 45.5 36.8 30.5 22.7 16.4 37.7
BaS-Net 58.2 52.3 44.6 36.0 27.0 18.6 10.4 35.3
A2CL-PT 61.2 56.1 48.1 39.0 30.1 19.2 10.6 37.8
ACM-BANet 64.6 57.7 48.9 40.9 32.3 21.9 13.5 39.9
HAM-Net 65.4 59.0 50.3 41.1 31.0 20.7 11.1 39.8
UM 67.5 61.2 52.3 43.4 33.7 22.9 12.1 41.9
FAC-Net (Ours) 67.6 62.1 52.6 44.3 33.4 22.5 12.7 42.2

Prerequisites

Recommended Environment

  • Python 3.6
  • Pytorch 1.2
  • Tensorboard Logger
  • CUDA 10.0

Data Preparation

  1. Prepare THUMOS'14 dataset.

    • We recommend using features and annotations provided by this repo.
  2. Place the features and annotations inside a dataset/Thumos14reduced/ folder.

Usage

Training

You can easily train the model by running the provided script.

  • Refer to train_options.py. Modify the argument of dataset-root to the path of your dataset folder.

  • Run the command below.

$ python train_main.py --run-type 0 --model-id 1   # rgb stream
$ python train_main.py --run-type 1 --model-id 2   # flow stream

Make sure you use different model-id for RGB and optical flow. Models are saved in ./ckpt/dataset_name/model_id/

Evaulation

The trained model can be found here. Please change the file name to xxx.pkl (e.g., 100.pkl) and put it into ./ckpt/dataset_name/model_id/. You can evaluate the model referring to the two stream evaluation process.

Single stream evaluation

  • Run the command below.
$ python train_main.py --pretrained --run-type 2 --model-id 1 --load-epoch 100  # rgb stream
$ python train_main.py --pretrained --run-type 3 --model-id 2 --load-epoch 100  # flow stream

load-epoch refers to the epoch of the best model. The best model would not always occur at 100 epoch, please refer to the log in the same folder of saved models to set the load epoch of the best model. Make sure you set the right model-id that corresponds to the model-id during training.

Two stream evaluation

  • Run the command below using our provided models.
$ python test_main.py --rgb-model-id 1 --flow-model-id 2 --rgb-load-epoch 100 --flow-load-epoch 100

References

We referenced the repos below for the code.

If you find this code useful, please cite our paper.

@InProceedings{Huang_2021_ICCV,
    author    = {Huang, Linjiang and Wang, Liang and Li, Hongsheng},
    title     = {Foreground-Action Consistency Network for Weakly Supervised Temporal Action Localization},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month     = {October},
    year      = {2021},
    pages     = {8002-8011}
}

Contact

If you have any question or comment, please contact the first author of the paper - Linjiang Huang ([email protected]).

PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Code for paper "Context-self contrastive pretraining for crop type semantic segmentation"

Code for paper "Context-self contrastive pretraining for crop type semantic segmentation" Setting up a python environment Follow the instruction in ht

Michael Tarasiou 11 Oct 09, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
ViSD4SA, a Vietnamese Span Detection for Aspect-based sentiment analysis dataset

UIT-ViSD4SA PACLIC 35 General Introduction This repository contains the data of the paper: Span Detection for Vietnamese Aspect-Based Sentiment Analys

Nguyễn Thị Thanh Kim 5 Nov 13, 2022
An Intelligent Self-driving Truck System For Highway Transportation

Inceptio Intelligent Truck System An Intelligent Self-driving Truck System For Highway Transportation Note The code is still in development. OS requir

InceptioResearch 11 Jul 13, 2022
Detail-Preserving Transformer for Light Field Image Super-Resolution

DPT Official Pytorch implementation of the paper "Detail-Preserving Transformer for Light Field Image Super-Resolution" accepted by AAAI 2022 . Update

50 Jan 01, 2023
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
EfficientMPC - Efficient Model Predictive Control Implementation

efficientMPC Efficient Model Predictive Control Implementation The original algo

Vin 8 Dec 04, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
This code is an unofficial implementation of HiFiSinger.

HiFiSinger This code is an unofficial implementation of HiFiSinger. The algorithm is based on the following papers: Chen, J., Tan, X., Luan, J., Qin,

Heejo You 87 Dec 23, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
This repository holds the code for the paper "Deep Conditional Gaussian Mixture Model forConstrained Clustering".

Deep Conditional Gaussian Mixture Model for Constrained Clustering. This repository holds the code for the paper Deep Conditional Gaussian Mixture Mod

17 Oct 30, 2022
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022