Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Overview

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

This is a official implementation of the CycleContrast introduced in the paper:Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Citation

If you find our work useful, please cite:

@article{wu2021contrastive,
  title={Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency},
  author={Wu, Haiping and Wang, Xiaolong},
  journal={arXiv preprint arXiv:2105.06463},
  year={2021}
}

Preparation

Our code is tested on Python 3.7 and Pytorch 1.3.0, please install the environment via

pip install -r requirements.txt

Model Zoo

We provide the model pretrained on R2V2 for 200 epochs.

method pre-train epochs on R2V2 dataset ImageNet Top-1 Linear Eval OTB Precision OTB Success UCF Top-1 pretrained model
MoCo 200 53.8 56.1 40.6 80.5 pretrain ckpt
CycleContrast 200 55.7 69.6 50.4 82.8 pretrain ckpt

Run Experiments

Data preparation

Download R2V2 (Random Related Video Views) dataset according to https://github.com/danielgordon10/vince.

The direction structure should be as followed:

CycleContrast
├── cycle_contrast 
├── scripts 
├── utils 
├── data
│   ├── r2v2_large_with_ids 
│   │   ├── train 
│   │   │   ├── --/
│   │   │   ├── -_/
│   │   │   ├── _-/
│   │   │   ├── __/
│   │   │   ├── -0/
│   │   │   ├── _0/
│   │   │   ├── ...
│   │   │   ├── zZ/
│   │   │   ├── zz/
│   │   ├── val
│   │   │   ├── --/
│   │   │   ├── -_/
│   │   │   ├── _-/
│   │   │   ├── __/
│   │   │   ├── -0/
│   │   │   ├── _0/
│   │   │   ├── ...
│   │   │   ├── zZ/
│   │   │   ├── zz/

Unsupervised Pretrain

./scripts/train_cycle.sh

Downstream task - ImageNet linear eval

Prepare ImageNet dataset according to pytorch ImageNet training code.

MODEL_DIR=output/cycle_res50_r2v2_ep200
IMAGENET_DATA=data/ILSVRC/Data/CLS-LOC
./scripts/eval_ImageNet.sh $MODEL_DIR $IMAGENET_DATA

Downstream task - OTB tracking

Transfer to OTB tracking evaluation is based on SiamFC-Pytorch. Please prepare environment and data according to SiamFC-Pytorch

git clone https://github.com/happywu/mmaction2-CycleContrast
# path to your pretrained model, change accordingly
CycleContrast=/home/user/code/CycleContrast
PRETRAIN=${CycleContrast}/output/cycle_res50_r2v2_ep200/checkpoint_0199.pth.tar
cd mmaction2_tracking
./scripts/submit_r2v2_r50_cycle.py ${PRETRAIN}

Downstream task - UCF classification

Transfer to UCF action recognition evaluation is based on AVID-CMA, prepare data and env according to AVID-CMA.

git clone https://github.com/happywu/AVID-CMA-CycleContrast
# path to your pretrained model, change accordingly
CycleContrast=/home/user/code/CycleContrast
PRETRAIN=${CycleContrast}/output/cycle_res50_r2v2_ep200/checkpoint_0199.pth.tar
cd AVID-CMA-CycleContrast 
./scripts/submit_r2v2_r50_cycle.py ${PRETRAIN}

Acknowledgements

The codebase is based on FAIR-MoCo. The OTB tracking evaluation is based on MMAction2, SiamFC-PyTorch and vince. The UCF classification evaluation follows AVID-CMA.

Thank you all for the great open source repositories!

You might also like...
[ICCV'21] Official implementation for the paper  Social NCE: Contrastive Learning of Socially-aware Motion Representations
[ICCV'21] Official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations

CrowdNav with Social-NCE This is an official implementation for the paper Social NCE: Contrastive Learning of Socially-aware Motion Representations by

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Supervised Contrastive Learning for Downstream Optimized Sequence Representations
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

《LXMERT: Learning Cross-Modality Encoder Representations from Transformers》(EMNLP 2020)

The Most Important Thing. Our code is developed based on: LXMERT: Learning Cross-Modality Encoder Representations from Transformers

SUPERVISED-CONTRASTIVE-LEARNING-FOR-PRE-TRAINED-LANGUAGE-MODEL-FINE-TUNING - The Facebook paper about fine tuning RoBERTa with contrastive loss  Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training process.

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Pytorch Implementation for NeurIPS (oral) paper: Pixel Level Cycle Association: A New Perspective for Domain Adaptive Semantic Segmentation

Pixel-Level Cycle Association This is the Pytorch implementation of our NeurIPS 2020 Oral paper Pixel-Level Cycle Association: A New Perspective for D

Code and models for ICCV2021 paper
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Deeprl - Standard DQN and dueling network for simple games

DeepRL This code implements the standard deep Q-learning and dueling network with experience replay (memory buffer) for playing simple games. DQN algo

Yao Zhou 6 Apr 12, 2020
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Collection of NLP model explanations and accompanying analysis tools

Thermostat is a large collection of NLP model explanations and accompanying analysis tools. Combines explainability methods from the captum library wi

126 Nov 22, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Open source implementation of "A Self-Supervised Descriptor for Image Copy Detection" (SSCD).

A Self-Supervised Descriptor for Image Copy Detection (SSCD) This is the open-source codebase for "A Self-Supervised Descriptor for Image Copy Detecti

Meta Research 68 Jan 04, 2023
PyTorch implementation of DeepDream algorithm

neural-dream This is a PyTorch implementation of DeepDream. The code is based on neural-style-pt. Here we DeepDream a photograph of the Golden Gate Br

121 Nov 05, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at [email protected]

TableParser Repo for "TableParser: Automatic Table Parsing with Weak Supervision from Spreadsheets" at DS3 Lab 11 Dec 13, 2022

Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022