The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

Overview

The Ludii General Game System

Build Status Maintenance twitter

Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository hosts the publicly available source code for Ludii. A precompiled build (Ludii.JAR) can be downloaded from Ludii's downloads page.

Requirements

Working with Ludii's source code requires Java Development Kit (JDK) version 8 or higher.

Getting Started

After (optionally forking) and cloning this repository, we recommend importing all projects into the Eclipse IDE. The main method to launch Ludii from your IDE is located in /Ludii/PlayerDesktop/src/app/StartDesktopApp. At this time we do not use any more sophisticated build tools (such as Maven) in our day-to-day programming with Ludii. There are some relatively simple Ant build scripts, but we only use these -- specifically, the /Ludii/PlayerDesktop/build.xml script -- for generating the releases published on the Ludii downloads page.

Note on IDEs: Other IDEs than Eclipse should ideally work as well, but we have no extensive experience working with Ludii in other IDEs, and are aware of at least some issues. For example, some parts of Ludii's code assume that, when launching Ludii from your IDE, that the current working directory is the one of the module containing the main method (i.e., /Ludii/PlayerDesktop). This is the case in Eclipse, but does not (by default) appear to be the case in some other IDEs such as IntelliJ. If you prefer working with different IDEs and are able to write a clear set of instructions for that IDE, we would be happy to see it in a new Pull Request!

Other Resources

We have various other resources available at the following links:

Contributing Guidelines

While we of course cannot guarantee that we will accept every suggested change or contribution, in principle we welcome contributions and are excited to see what you come up with! Please send contributions on GitHub as new Pull Requests, and provide brief descriptions of what has changed and in what ways these changes improve Ludii (or other aspects of the repo, such as documentation). Please ensure that any new or changed code follows the same code style as the rest of the repository.

Note: pull requests should be used for code or documentation contributions, but not for new games (i.e., .lud files). We prefer that new games are submitted through our forums.

Citing Information

When using Ludii's source code in any publications, please cite our paper describing Ludii: https://ecai2020.eu/papers/1248_paper.pdf

The following .bib entry may be used for citing the use of Ludii in papers:

@inproceedings{Piette2020Ludii,
        author      = "{\'E}. Piette and D. J. N. J. Soemers and M. Stephenson and C. F. Sironi and M. H. M. Winands and C. Browne",
        booktitle   = "Proceedings of the 24th European Conference on Artificial Intelligence (ECAI 2020)",
        title       = "Ludii -- The Ludemic General Game System",
        pages       = "411-418",
        year        = "2020",
        editor      = "G. De Giacomo and A. Catala and B. Dilkina and M. Milano and S. Barro and A. Bugarín and J. Lang",
        series      = "Frontiers in Artificial Intelligence and Applications",
        volume      = "325",
    publisher	= "IOS Press"
}

Contact Info

The preferred method for getting help with troubleshooting, suggesting or requesting additional functionality, or asking other questions about Ludii's source code, is posting a message on the Ludii Forum. Alternatively, the following email address may be used: ludii(dot)games(at)gmail(dot)com.

Acknowledgements

This repository is part of the European Research Council-funded Digital Ludeme Project (ERC Consolidator Grant #771292) run by Cameron Browne at Maastricht University's Department of Data Science and Knowledge Engineering.

European Research Council Logo

Owner
Digital Ludeme Project
Account for repositories related to the Ludii general game system, developed for the ERC-funded Digital Ludeme Project.
Digital Ludeme Project
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

Selim Firat Yilmaz 181 Dec 18, 2022
Code for "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" paper

UNICORN 🦄 Webpage | Paper | BibTex PyTorch implementation of "Share With Thy Neighbors: Single-View Reconstruction by Cross-Instance Consistency" pap

118 Jan 06, 2023
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Tzer: TVM Implementation of "Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation (OOPSLA'22)“.

Artifact • Reproduce Bugs • Quick Start • Installation • Extend Tzer Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation This is the s

12 Dec 29, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Implementation of Heterogeneous Graph Attention Network

HetGAN Implementation of Heterogeneous Graph Attention Network This is the code repository of paper "Prediction of Metro Ridership During the COVID-19

5 Dec 28, 2021
Miscellaneous and lightweight network tools

Network Tools Collection of miscellaneous and lightweight network tools to simplify daily operations, administration, and troubleshooting of networks.

Nicholas Russo 22 Mar 22, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022
Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

trRosetta - Pytorch (wip) Implementation of trRosetta and trDesign for Pytorch, made into a convenient package

Phil Wang 67 Dec 17, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023