Official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Overview

Introduction

This repository is the official PyTorch implementation of Data-free Knowledge Distillation for Object Detection, WACV 2021.

Data-free Knowledge Distillation for Object Detection
Akshay Chawla, Hongxu Yin, Pavlo Molchanov and Jose Alvarez
NVIDIA

Abstract: We present DeepInversion for Object Detection (DIODE) to enable data-free knowledge distillation for neural networks trained on the object detection task. From a data-free perspective, DIODE synthesizes images given only an off-the-shelf pre-trained detection network and without any prior domain knowledge, generator network, or pre-computed activations. DIODE relies on two key components—first, an extensive set of differentiable augmentations to improve image fidelity and distillation effectiveness. Second, a novel automated bounding box and category sampling scheme for image synthesis enabling generating a large number of images with a diverse set of spatial and category objects. The resulting images enable data-free knowledge distillation from a teacher to a student detector, initialized from scratch. In an extensive set of experiments, we demonstrate that DIODE’s ability to match the original training distribution consistently enables more effective knowledge distillation than out-of-distribution proxy datasets, which unavoidably occur in a data-free setup given the absence of the original domain knowledge.

[PDF - OpenAccess CVF]

Core idea

LICENSE

Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.

This work is made available under the Nvidia Source Code License (1-Way Commercial). To view a copy of this license, visit https://github.com/NVlabs/DIODE/blob/master/LICENSE

Setup environment

Install conda [link] python package manager then install the lpr environment and other packages as follows:

$ conda env create -f ./docker_environment/lpr_env.yml
$ conda activate lpr
$ conda install -y -c conda-forge opencv
$ conda install -y tqdm
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir ./

Note: You may also generate a docker image based on provided Dockerfile docker_environments/Dockerfile.

How to run?

This repository allows for generating location and category conditioned images from an off-the-shelf Yolo-V3 object detection model.

  1. Download the directory DIODE_data from google cloud storage: gcs-link (234 GB)
  2. Copy pre-trained yolo-v3 checkpoint and pickle files as follows:
    $ cp /path/to/DIODE_data/pretrained/names.pkl /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/colors.pkl /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/yolov3-tiny.pt /pathto/lpr_deep_inversion/models/yolo/
    $ cp /path/to/DIODE_data/pretrained/yolov3-spp-ultralytics.pt /pathto/lpr_deep_inversion/models/yolo/
    
  3. Extract the one-box dataset (single object per image) as follows:
    $ cd /path/to/DIODE_data
    $ tar xzf onebox/onebox.tgz -C /tmp
    
  4. Confirm the folder /tmp/onebox containing the onebox dataset is present and has following directories and text file manifest.txt:
    $ cd /tmp/onebox
    $ ls
    images  labels  manifest.txt
    
  5. Generate images from yolo-v3:
    $ cd /path/to/lpr_deep_inversion
    $ chmod +x scripts/runner_yolo_multiscale.sh
    $ scripts/runner_yolo_multiscale.sh
    

Images

Notes:

  1. For ngc, use the provided bash script scripts/diode_ngc_interactivejob.sh to start an interactive ngc job with environment setup, code and data setup.
  2. To generate large dataset use bash script scripts/LINE_looped_runner_yolo.sh.
  3. Check knowledge_distillation subfolder for code for knowledge distillation using generated datasets.

Citation

@inproceedings{chawla2021diode,
	title = {Data-free Knowledge Distillation for Object Detection},
	author = {Chawla, Akshay and Yin, Hongxu and Molchanov, Pavlo and Alvarez, Jose M.},
	booktitle = {The IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)},
	month = January,
	year = {2021}
}
TransReID: Transformer-based Object Re-Identification

TransReID: Transformer-based Object Re-Identification [arxiv] The official repository for TransReID: Transformer-based Object Re-Identification achiev

569 Dec 30, 2022
Statistical-Rethinking-with-Python-and-PyMC3 - Python/PyMC3 port of the examples in " Statistical Rethinking A Bayesian Course with Examples in R and Stan" by Richard McElreath

Statistical Rethinking with Python and PyMC3 This repository has been deprecated in favour of this one, please check that repository for updates, for

Osvaldo Martin 786 Dec 29, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
Object detection (YOLO) with pytorch, OpenCV and python

Real Time Object/Face Detection Using YOLO-v3 This project implements a real time object and face detection using YOLO algorithm. You only look once,

1 Aug 04, 2022
Camera calibration & 3D pose estimation tools for AcinoSet

AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs in the Wild Daniel Joska, Liam Clark, Naoya Muramatsu, Ricardo Jericevich, Fre

African Robotics Unit 42 Nov 16, 2022
Tensorflow implementation of DeepLabv2

TF-deeplab This is a Tensorflow implementation of DeepLab, compatible with Tensorflow 1.2.1. Currently it supports both training and testing the ResNe

Chenxi Liu 21 Sep 27, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Statsmodels: statistical modeling and econometrics in Python

About statsmodels statsmodels is a Python package that provides a complement to scipy for statistical computations including descriptive statistics an

statsmodels 8.1k Jan 02, 2023
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation"

RegSeg The official implementation of "Rethink Dilated Convolution for Real-time Semantic Segmentation" Paper: arxiv D block Decoder Setup Install the

Roland 61 Dec 27, 2022
It's a powerful version of linebot

CTPS-FINAL Linbot-sever.py 主程式 Algorithm.py 推薦演算法,媒合餐廳端資料與顧客端資料 config.ini 儲存 channel-access-token、channel-secret 資料 Preface 生活在成大將近4年,我們每天的午餐時間看著形形色色

1 Oct 17, 2022
tensorrt int8 量化yolov5 4.0 onnx模型

onnx模型转换为 int8 tensorrt引擎

123 Dec 28, 2022
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
Pytorch implementation of Generative Models as Distributions of Functions 🌿

Generative Models as Distributions of Functions This repo contains code to reproduce all experiments in Generative Models as Distributions of Function

Emilien Dupont 117 Dec 29, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022