The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Overview

Motion Compensated Pulse Rate Estimation

Overview

This project has 2 main parts.

  1. Develop a Pulse Rate Algorithm on the given training data. Then Test Your Algorithm and see that it has met the success criteria.
  2. Apply the Pulse Rate Algorithm on a Clinical Application and compute more clinically meaningful features and discover healthcare trends.

Part 1: Pulse Rate Algorithm

Introduction

A core feature that many users expect from their wearable devices is pulse rate estimation. Continuous pulse rate estimation can be informative for many aspects of a wearer's health. Pulse rate during exercise can be a measure of workout intensity and resting heart rate is sometimes used as an overall measure of cardiovascular fitness. In this project you will create a pulse rate estimation algorithm for a wrist-wearable device. Use the information in the Physiological Mechanics of Pulse Rate Estimation section below to inform the design of your algorithm. Make sure that your algorithm conforms to the given Algorithm Specifications in the following concept, Part 1: Overview & Instructions.

Background

Physiological Mechanics of Pulse Rate Estimation

Pulse rate is typically estimated by using the PPG sensor. When the ventricles contract, the capillaries in the wrist fill with blood. The (typically green) light emitted by the PPG sensor is absorbed by red blood cells in these capillaries and the photodetector will see the drop in reflected light. When the blood returns to the heart, fewer red blood cells in the wrist absorb the light and the photodetector sees an increase in reflected light. The period of this oscillating waveform is the pulse rate.

PPG Sensor on Blood Flow

However, the heart beating is not the only phenomenon that modulates the PPG signal. Blood in the wrist is fluid, and arm movement will cause the blood to move correspondingly. During exercise, like walking or running, we see another periodic signal in the PPG due to this arm motion. Our pulse rate estimator has to be careful not to confuse this periodic signal with the pulse rate.

We can use the accelerometer signal of our wearable device to help us keep track of which periodic signal is caused by motion. Because the accelerometer is only sensing arm motion, any periodic signal in the accelerometer is likely not due to the heart beating, and only due to the arm motion. If our pulse rate estimator is picking a frequency that's strong in the accelerometer, it may be making a mistake.

All estimators will have some amount of error. How much error is tolerable depends on the application. If we were using these pulse rate estimates to compute long term trends over months, then we may be more robust to higher error variance. However, if we wanted to give information back to the user about a specific workout or night of sleep, we would require a much lower error.

Algorithm Confidence and Availability

Many machine learning algorithms produce outputs that can be used to estimate their per-result error. For example, in logistic regression, you can use the predicted class probabilities to quantify trust in the classification. A classification where one class has a very high probability is probably more accurate than one where all classes have similar probabilities. Certainly, this method is not perfect and won't perfectly rank-order estimates based on error. But if accurate enough, it allows consumers of the algorithm more flexibility in how to use it. We call this estimation of the algorithm's error the confidence.

In pulse rate estimation, having a confidence value can be useful if a user wants just a handful of high-quality pulse rate estimate per night. They can use the confidence algorithm to select the 20 most confident estimates at night and ignore the rest of the outputs. Confidence estimates can also be used to set the point on the error curve that we want to operate at by sacrificing the number of estimates that are considered valid. There is a trade-off between availability and error. For example, if we want to operate at 10% availability, we look at our training dataset to determine the confidence threshold for which 10% of the estimates pass. Then if only if an estimate's confidence value is above that threshold, do we consider it valid. See the error vs. availability curve below.

This plot is created by computing the mean absolute error at all -- or at least 100 of -- the confidence thresholds in the dataset.

Building a confidence algorithm for pulse rate estimation is a little tricker than logistic regression because intuitively, there isn't some transformation of the algorithm output that can make a good confidence score. However, by understanding our algorithm behavior, we can come up with some general ideas that might create a good confidence algorithm. For example, if our algorithm is picking a strong frequency component that's not present in the accelerometer, we can be relatively confident in the estimate. Turn this idea into an algorithm by quantifying "strong frequency component".

Part 2: Clinical Application

Now that you have built your pulse rate algorithm and tested your algorithm to know it works, we can use it to compute more clinically meaningful features and discover healthcare trends.

Specifically, you will use 24 hours of heart rate data from 1500 samples to try to validate the well-known trend that average resting heart rate increases up until middle age and then decreases into old age. We'll also see if resting heart rates are higher for women than men. See the trend illustrated in this image:

Follow the steps in the notebook to reproduce this result!

Dataset (CAST)

The data from this project comes from the Cardiac Arrhythmia Suppression Trial (CAST), which was sponsored by the National Heart, Lung, and Blood Institute (NHLBI). CAST collected 24 hours of heart rate data from ECGs from people who have had a myocardial infarction (MI) within the past two years.[1] This data has been smoothed and resampled to more closely resemble PPG-derived pulse rate data from a wrist wearable.[2]

  1. CAST RR Interval Sub-Study Database Citation - Stein PK, Domitrovich PP, Kleiger RE, Schechtman KB, Rottman JN. Clinical and demographic determinants of heart rate variability in patients post-myocardial infarction: insights from the Cardiac Arrhythmia Suppression Trial (CAST). Clin Cardiol 23(3):187-94; 2000 (Mar)
  2. Physionet Citation - Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PCh, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals (2003). Circulation. 101(23):e215-e220.
Owner
Omar Laham
Bioinformatician and Healthcare AI Engineer
Omar Laham
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Dec 31, 2022
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

LEI TAI 111 Dec 08, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022
A fast Protein Chain / Ligand Extractor and organizer.

Are you tired of using visualization software, or full blown suites just to separate protein chains / ligands ? Are you tired of organizing the mess o

Amine Abdz 9 Nov 06, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Stratified Transformer for 3D Point Cloud Segmentation (CVPR 2022)

Stratified Transformer for 3D Point Cloud Segmentation Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia

DV Lab 195 Jan 01, 2023
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
An MQA (Studio, originalSampleRate) identifier for lossless flac files written in Python.

An MQA (Studio, originalSampleRate) identifier for "lossless" flac files written in Python.

Daniel 10 Oct 03, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Pre-trained NFNets with 99% of the accuracy of the official paper

NFNet Pytorch Implementation This repo contains pretrained NFNet models F0-F6 with high ImageNet accuracy from the paper High-Performance Large-Scale

Benjamin Schmidt 133 Dec 09, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022