Council-GAN - Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Overview

Council-GAN

Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Paper

Ori Nizan , Ayellet Tal, Breaking the Cycle - Colleagues are all you need [Project]

gan_council_teaser

gan_council_overview

male2female_gif

glasses_gif

anime_gif

Temporary Telegram Bot

Send image to this telegram bot and it will send you back its female translation using our implementation

Usage

Install requirements

conda env create -f conda_requirements.yml

Downloading the dataset

Download the selfie to anime dataset:

bash ./scripts/download.sh U_GAT_IT_selfie2anime

Download the celeba glasses removal dataset:

bash ./scripts/download.sh celeba_glasses_removal

Download the celeba male to female dataset:

bash ./scripts/download.sh celeba_male2female

use your on dataset:

├──datasets
    └──DATASET_NAME
        ├──testA
            ├──im1.png
            ├──im2.png
            └── ...
        ├──testB
            ├──im3.png
            ├──im4.png
            └── ...
        ├──trainA
            ├──im5.png
            ├──im6.png
            └── ...
        └──trainB
            ├──im7.png
            ├──im8.png
            └── ...

and change the data_root attribute to ./datasets/DATASET_NAME in the yaml file

Training:

Selfie to anime:

python train.py --config configs/anime2face_council_folder.yaml --output_path ./outputs/council_anime2face_256_256 --resume

Glasses removel:

python train.py --config configs/galsses_council_folder.yaml --output_path ./outputs/council_glasses_128_128 --resume

Male to female:

python train.py --config configs/male2female_council_folder.yaml --output_path ./outputs/male2famle_256_256 --resume

Testing:

for converting all the images in input_folder using all the members in the council:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

or using spsified memeber:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/b2a_gen_3_01000000.pt --input_folder ./datasets/selfie2anime/testB --a2b 0

Download Pretrain Models

Download pretrain male to female model:

bash ./scripts/download.sh pretrain_male_to_female
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/m2f/256/male2female_council_folder.yaml --output_folder ./outputs/male2famle_256_256 --checkpoint pretrain/m2f/256/01000000 --input_folder ./datasets/celeba_male2female/testA --a2b 1

Download pretrain glasses removal model:

bash ./scripts/download.sh pretrain_glasses_removal
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --output_folder ./outputs/council_glasses_128_128 --checkpoint pretrain/glasses_removal/128/01000000 --input_folder ./datasets/glasses/testA --a2b 1

Download pretrain selfie to anime model:

bash ./scripts/download.sh pretrain_selfie_to_anime
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/anime/256/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint pretrain/anime/256/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

Test GUI:

gan_council_overview

test GUI on pretrain model:

male2female
python test_gui.py --config pretrain/m2f/128/male2female_council_folder.yaml --checkpoint pretrain/m2f/128/a2b_gen_0_01000000.pt --a2b 1
glasses Removal
python test_gui.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --checkpoint pretrain/glasses_removal/128/a2b_gen_3_01000000.pt --a2b 1
selfie2anime
python test_gui.py --config pretrain/anime/256/anime2face_council_folder.yaml --checkpoint pretrain/anime/256/b2a_gen_3_01000000.pt --a2b 0

Open In Colab

Citation

@inproceedings{nizan2020council,
  title={Breaking the Cycle - Colleagues are all you need},
  author={Ori Nizan and Ayellet Tal},
  booktitle={IEEE conference on computer vision and pattern recognition (CVPR)},
  year={2020}
}

Acknowledgement

In this work we based our code on MUNIT implementation. Please cite the original MUNIT if you use their part of the code.

Owner
ori nizan
Computer Vision & Deep Learning PhD student
ori nizan
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
this is a lite easy to use virtual keyboard project for anyone to use

virtual_Keyboard this is a lite easy to use virtual keyboard project for anyone to use motivation I made this for this year's recruitment for RobEn AA

Mohamed Emad 3 Oct 23, 2021
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

Xumin Yu 31 Dec 24, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Image Fusion Transformer

Image-Fusion-Transformer Platform Python 3.7 Pytorch =1.0 Training Dataset MS-COCO 2014 (T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ram

Vibashan VS 68 Dec 23, 2022
FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection

FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection This repository contains an implementation of FCAF3D, a 3D object detection method introdu

SamsungLabs 153 Dec 29, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
List of awesome things around semantic segmentation 🎉

Awesome Semantic Segmentation List of awesome things around semantic segmentation 🎉 Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
DIT is a DTLS MitM proxy implemented in Python 3. It can intercept, manipulate and suppress datagrams between two DTLS endpoints and supports psk-based and certificate-based authentication schemes (RSA + ECC).

DIT - DTLS Interception Tool DIT is a MitM proxy tool to intercept DTLS traffic. It can intercept, manipulate and/or suppress DTLS datagrams between t

52 Nov 30, 2022
PyTorch implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 13.4k Jan 08, 2023
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Sequence-to-Sequence learning using PyTorch

Seq2Seq in PyTorch This is a complete suite for training sequence-to-sequence models in PyTorch. It consists of several models and code to both train

Elad Hoffer 514 Nov 17, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning

UniMoCo: Unsupervised, Semi-Supervised and Full-Supervised Visual Representation Learning This is the official PyTorch implementation for UniMoCo pape

dddzg 49 Jan 02, 2023
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022