Sparse R-CNN: End-to-End Object Detection with Learnable Proposals, CVPR2021

Overview

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

License: MIT

Paper (CVPR 2021)

Sparse R-CNN: End-to-End Object Detection with Learnable Proposals

Updates

  • (02/03/2021) Higher performance is reported by using stronger backbone model PVT.
  • (23/02/2021) Higher performance is reported by using stronger pretrain model DetCo.
  • (02/12/2020) Models and logs(R101_100pro_3x and R101_300pro_3x) are available.
  • (26/11/2020) Models and logs(R50_100pro_3x and R50_300pro_3x) are available.
  • (26/11/2020) Higher performance for Sparse R-CNN is reported by setting the dropout rate as 0.0.

Models

Method inf_time train_time box AP download
R50_100pro_3x 23 FPS 19h 42.8 model | log
R50_300pro_3x 22 FPS 24h 45.0 model | log
R101_100pro_3x 19 FPS 25h 44.1 model | log
R101_300pro_3x 18 FPS 29h 46.4 model | log

Models and logs are available in Baidu Drive by code wt9n.

Notes

  • We observe about 0.3 AP noise.
  • The training time is on 8 GPUs with batchsize 16. The inference time is on single GPU. All GPUs are NVIDIA V100.
  • We use the models pre-trained on imagenet using torchvision. And we provide torchvision's ResNet-101.pkl model. More details can be found in the conversion script.
Method inf_time train_time box AP codebase
R50_300pro_3x 22 FPS 24h 45.0 detectron2
R50_300pro_3x.detco 22 FPS 28h 46.5 detectron2
PVTSmall_300pro_3x 13 FPS 50h 45.7 mmdetection
PVTv2-b2_300pro_3x 11 FPS 76h 50.1 mmdetection

Installation

The codebases are built on top of Detectron2 and DETR.

Requirements

  • Linux or macOS with Python ≥ 3.6
  • PyTorch ≥ 1.5 and torchvision that matches the PyTorch installation. You can install them together at pytorch.org to make sure of this
  • OpenCV is optional and needed by demo and visualization

Steps

  1. Install and build libs
git clone https://github.com/PeizeSun/SparseR-CNN.git
cd SparseR-CNN
python setup.py build develop
  1. Link coco dataset path to SparseR-CNN/datasets/coco
mkdir -p datasets/coco
ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017
  1. Train SparseR-CNN
python projects/SparseRCNN/train_net.py --num-gpus 8 \
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml
  1. Evaluate SparseR-CNN
python projects/SparseRCNN/train_net.py --num-gpus 8 \
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
    --eval-only MODEL.WEIGHTS path/to/model.pth
  1. Visualize SparseR-CNN
python demo/demo.py\
    --config-file projects/SparseRCNN/configs/sparsercnn.res50.100pro.3x.yaml \
    --input path/to/images --output path/to/save_images --confidence-threshold 0.4 \
    --opts MODEL.WEIGHTS path/to/model.pth

Third-party resources

License

SparseR-CNN is released under MIT License.

Citing

If you use SparseR-CNN in your research or wish to refer to the baseline results published here, please use the following BibTeX entries:

@article{peize2020sparse,
  title   =  {{SparseR-CNN}: End-to-End Object Detection with Learnable Proposals},
  author  =  {Peize Sun and Rufeng Zhang and Yi Jiang and Tao Kong and Chenfeng Xu and Wei Zhan and Masayoshi Tomizuka and Lei Li and Zehuan Yuan and Changhu Wang and Ping Luo},
  journal =  {arXiv preprint arXiv:2011.12450},
  year    =  {2020}
}
Owner
Peize Sun
PhD student, The University of Hong Kong, Computer Vision
Peize Sun
Code and model benchmarks for "SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology"

NeurIPS 2020 SEVIR Code for paper: SEVIR : A Storm Event Imagery Dataset for Deep Learning Applications in Radar and Satellite Meteorology Requirement

USAF - MIT Artificial Intelligence Accelerator 46 Dec 15, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
🏎️ Accelerate training and inference of 🤗 Transformers with easy to use hardware optimization tools

Hugging Face Optimum 🤗 Optimum is an extension of 🤗 Transformers, providing a set of performance optimization tools enabling maximum efficiency to t

Hugging Face 842 Dec 30, 2022
Empower Sequence Labeling with Task-Aware Language Model

LM-LSTM-CRF Check Our New NER Toolkit 🚀 🚀 🚀 Inference: LightNER: inference w. models pre-trained / trained w. any following tools, efficiently. Tra

Liyuan Liu 838 Jan 05, 2023
Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network

Super Resolution Examples We run this script under TensorFlow 2.0 and the TensorLayer2.0+. For TensorLayer 1.4 version, please check release. 🚀 🚀 🚀

TensorLayer Community 2.9k Jan 08, 2023
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
A collection of resources, problems, explanations and concepts that are/were important during my Data Science journey

Data Science Gurukul List of resources, interview questions, concepts I use for my Data Science work. Topics: Basics of Programming with Python + Unde

Smaranjit Ghose 10 Oct 25, 2022
Random-Afg - Afghanistan Random Old Idz Cloner Tools

AFGHANISTAN RANDOM OLD IDZ CLONER TOOLS Install $ apt update $ apt upgrade $ apt

MAHADI HASAN AFRIDI 5 Jan 26, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
UnpNet - Rethinking 3-D LiDAR Point Cloud Segmentation(IEEE TNNLS)

UnpNet Citation Please cite the following paper if you use this repository in your reseach. @article {PMID:34914599, Title = {Rethinking 3-D LiDAR Po

Shijie Li 4 Jul 15, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Pytorch implementation of paper "Efficient Nearest Neighbor Language Models" (EMNLP 2021)

Junxian He 57 Jan 01, 2023
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023