Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

Overview

CSE-Autoloss

Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models. For object detection, the well-established classification and regression loss functions have been carefully designed by considering diverse learning challenges (e.g. class imbalance, hard negative samples, and scale variances). Inspired by the recent progress in network architecture search, it is interesting to explore the possibility of discovering new loss function formulations via directly searching the primitive operation combinations. So that the learned losses not only fit for diverse object detection challenges to alleviate huge human efforts, but also have better alignment with evaluation metric and good mathematical convergence property. Beyond the previous auto-loss works on face recognition and image classification, our work makes the first attempt to discover new loss functions for the challenging object detection from primitive operation levels and finds the searched losses are insightful. We propose an effective convergence-simulation driven evolutionary search algorithm, called CSE-Autoloss, for speeding up the search progress by regularizing the mathematical rationality of loss candidates via two progressive convergence simulation modules: convergence property verification and model optimization simulation. The best-discovered loss function combinations CSE-Autoloss-A and CSE-Autoloss-B outperform default combinations (Cross-entropy/Focal loss for classification and L1 loss for regression) by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors on COCO respectively.

The repository contains the demo training scripts for the best-searched loss combinations of our paper (ICLR2021) Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search.

Installation

Please refer to get_started.md for installation.

Get Started

Please see get_started.md for the basic usage of MMDetection.

Searched Loss

Two-Stage Best-Discovered Loss

CSE_Autoloss_A_cls='Neg(Dot(Mul(Y,Add(1,Sin(Z))),Log(Softmax(X))))'

CSE_Autoloss_A_reg='Add(1,Neg(Add(Div(I,U),Neg(Div(Add(E,Neg(Add(I,2))),E)))))'

One-Stage Best-Discovered Loss

CSE_Autoloss_B_cls='Neg(Add(Mul(Q,Mul(Add(1,Serf(Sig(NY))),Log(Sig(X)))),Mul(Add(Sgdf(X),Neg(Q)),Mul(Add(Add(1,Neg(Q)),Neg(Add(1,Neg(Sig(X))))),Log(Add(1,Neg(Sig(X))))))))'

CSE_Autoloss_B_reg='Neg(Div(Add(Div(Neg(Add(Neg(E),Add(1,I))),Neg(Add(3,Add(2,U)))),Add(Div(E,E),Div(Neg(E),Neg(1)))),Neg(Add(Div(Neg(Add(U,Div(I,1))),Neg(3)),Neg(E)))))'

[1] u, i, e, w indicate union, intersection, enclose and intersection-over-union (IoU) between bounding box prediction and groundtruth. x, y are for class prediction and label.
[2] dot is for dot product, erf is for scaled error function, gd is for scaled gudermannian function. Please see more details about "S"-shaped curve at wiki.

Performance

Performance for COCO val are as follows.

Detector Loss Bbox mAP Command
Faster R-CNN R50 CSE-Autoloss-A 38.5% Link
Faster R-CNN R101 CSE-Autoloss-A 40.2% Link
Cascade R-CNN R50 CSE-Autoloss-A 40.5% Link
Mask R-CNN R50 CSE-Autoloss-A 39.1% Link
FCOS R50 CSE-Autoloss-B 39.6% Link
ATSS R50 CSE-Autoloss-B 40.5% Link

[1] We replace the centerness_target in FCOS and ATSS to the IoU between bbox_pred and bbox_target. Please see more details at fcos_head.py and atss_head.py.

[2] For the search loss combinations, loss_bbox weight for ATSS sets to 1 (instead of 2). Please see more details here.

Quick start to train the model with searched/default loss combinations

# cls - classification, reg - regression

# Train with searched classification loss and searched regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_cls $SEARCH_CLS_LOSS --loss_reg $SEARCH_REG_LOSS --launcher pytorch;

# Train with searched classification loss and default regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_cls $SEARCH_CLS_LOSS --launcher pytorch;

# Train with default classification loss and searched regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --loss_reg $SEARCH_REG_LOSS --launcher pytorch;

# Train with default classification loss and default regression loss
python -m torch.distributed.launch --nproc_per_node=$GPUS --master_port=$PORT ./tools/train.py $CONFIG --launcher pytorch;

Acknowledgement

Thanks to MMDetection Team for their powerful deep learning detection framework. Thanks to Huawei Noah's Ark Lab AI Theory Group for their numerous V100 GPUs.

Citation

If you use this toolbox or benchmark in your research, please cite this project.

@inproceedings{
  liu2021loss,
  title={Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search},
  author={Peidong Liu and Gengwei Zhang and Bochao Wang and Hang Xu and Xiaodan Liang and Yong Jiang and Zhenguo Li},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=5jzlpHvvRk}
}
@article{mmdetection,
  title   = {{MMDetection}: Open MMLab Detection Toolbox and Benchmark},
  author  = {Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and
             Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and
             Liu, Ziwei and Xu, Jiarui and Zhang, Zheng and Cheng, Dazhi and
             Zhu, Chenchen and Cheng, Tianheng and Zhao, Qijie and Li, Buyu and
             Lu, Xin and Zhu, Rui and Wu, Yue and Dai, Jifeng and Wang, Jingdong
             and Shi, Jianping and Ouyang, Wanli and Loy, Chen Change and Lin, Dahua},
  journal= {arXiv preprint arXiv:1906.07155},
  year={2019}
}
Owner
Peidong Liu(刘沛东)
Master Student in CS @ Tsinghua University. My research interest lies in scene understanding, visual tracking and AutoML for loss function.
Peidong Liu(刘沛东)
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Official source code of Fast Point Transformer, CVPR 2022

Fast Point Transformer Project Page | Paper This repository contains the official source code and data for our paper: Fast Point Transformer Chunghyun

182 Dec 23, 2022
"SOLQ: Segmenting Objects by Learning Queries", SOLQ is an end-to-end instance segmentation framework with Transformer.

SOLQ: Segmenting Objects by Learning Queries This repository is an official implementation of the paper SOLQ: Segmenting Objects by Learning Queries.

MEGVII Research 179 Jan 02, 2023
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023
MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Introduction MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identif

Matrix Profile Foundation 79 Dec 31, 2022
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
Image-to-image translation with conditional adversarial nets

pix2pix Project | Arxiv | PyTorch Torch implementation for learning a mapping from input images to output images, for example: Image-to-Image Translat

Phillip Isola 9.3k Jan 08, 2023
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
[NeurIPS 2021] Official implementation of paper "Learning to Simulate Self-driven Particles System with Coordinated Policy Optimization".

Code for Coordinated Policy Optimization Webpage | Code | Paper | Talk (English) | Talk (Chinese) Hi there! This is the source code of the paper “Lear

DeciForce: Crossroads of Machine Perception and Autonomy 81 Dec 19, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Image Lowpoly based on Centroid Voronoi Diagram via python-opencv and taichi

CVTLowpoly: Image Lowpoly via Centroid Voronoi Diagram Image Sharp Feature Extraction using Guide Filter's Local Linear Theory via opencv-python. The

Pupa 4 Jul 29, 2022
Source for the paper "Universal Activation Function for machine learning"

Universal Activation Function Tensorflow and Pytorch source code for the paper Yuen, Brosnan, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. "Universal acti

4 Dec 03, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022