Gauge equivariant mesh cnn

Overview

Geometric Mesh CNN

The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphsDownload PDF by Pim de Haan, Maurice Weiler, Taco Cohen and Max Welling, presented at ICLR 2021.

We would like to thank Ruben Wiersma as his implementation of Harmonic Surface Networks served as an inspiration for some parts of the code. Furthermore, we would like to thank Julian Suk for beta-testing the code.

Installation & dependencies

Make sure the following dependencies are installed:

  • Python (tested on 3.8)
  • Pytorch (tested on 1.8)
  • Pytorch Geometric (tested on 1.6.3)
  • Conda

Then to install, clone this repository and install the gem_cnn package by executing in this directory:

pip install .

Docker

Alternatively, if you have a GPU with CUDA 11.1 and have set up docker, then you can easily run the experiment at experiments/shapes.py in the following way:.

To build the image run in this directory:

docker build . -t gem_cnn_demo

Then to run:

docker run -it --rm --runtime=nvidia gem_cnn_demo python experiments/shapes.py

In order to run the FAUST experiments via Docker, we recommend mounting the local data folder inside the docker container by running:

docker run -it --rm --runtime=nvidia -v $(pwd)/data:/workspace/data gem_cnn_demo python experiments/faust_direct.py

Then run once, and follow instructions on how to download the dataset. Then run again to train the FAUST model.

Usage

The code implements a graph convolution with Pytorch Geometric.

Example experiments

In the folder experiments, the following examples are given:

  • experiments/shapes.py a simple toy experiment to classify geometric shapes.
  • experiments/faust_direct.py an implementation of a network similar the network used in our paper on the FAUST dataset. It does message passing directly over the edges of the mesh and does not use pooling. The used input features are the non-equivariant XYZ coordinates.
  • experiments/faust_pool.py is an alternative implementation for FAUST. It uses convolution over larger distances than direct neighbours, pooling and the equivariant matrix features.

All example experiments use Pytorch-Ignite, but the GEM-CNN code does not depend on this.

Reference

If you find our work useful, please cite

@inproceedings{dehaan2021,  
  title={Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs},  
  author={Pim de Haan and Maurice Weiler and Taco Cohen and Max Welling}
  booktitle={International Conference on Learning Representations},  
  year={2021},  
  url={https://openreview.net/forum?id=Jnspzp-oIZE}  
}

Export

This software may be subject to U.S. and international export, re-export, or transfer (“export”) laws. Diversion contrary to U.S. and international law is strictly prohibited.

Owner
An initiative of Qualcomm Technologies, Inc.
System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Depth-Aware Video Frame Interpolation (CVPR 2019)

DAIN (Depth-Aware Video Frame Interpolation) Project | Paper Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang, Zhiyong Gao, and Ming-Hsuan Yang IEEE C

Wenbo Bao 7.7k Dec 31, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
Symbolic Music Generation with Diffusion Models

Symbolic Music Generation with Diffusion Models Supplementary code release for our work Symbolic Music Generation with Diffusion Models. Installation

Magenta 119 Jan 07, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
A wrapper around SageMaker ML Lineage Tracking extending ML Lineage to end-to-end ML lifecycles, including additional capabilities around Feature Store groups, queries, and other relevant artifacts.

ML Lineage Helper This library is a wrapper around the SageMaker SDK to support ease of lineage tracking across the ML lifecycle. Lineage artifacts in

AWS Samples 12 Nov 01, 2022
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
Code & Data for Enhancing Photorealism Enhancement

Enhancing Photorealism Enhancement Stephan R. Richter, Hassan Abu AlHaija, Vladlen Koltun Paper | Website (with side-by-side comparisons) | Video (Pap

Intelligent Systems Lab Org 1.1k Dec 31, 2022
Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak.

DeepCreamPy Decensoring Hentai with Deep Neural Networks. Formerly named DeepMindBreak. A deep learning-based tool to automatically replace censored a

616 Jan 06, 2023
This is the pytorch implementation for the paper: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation, which is accepted to ICCV2021.

GMPQ: Generalizable Mixed-Precision Quantization via Attribution Rank Preservation This is the pytorch implementation for the paper: Generalizable Mix

18 Sep 02, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Download and preprocess popular sequential recommendation datasets

Sequential Recommendation Datasets This repository collects some commonly used sequential recommendation datasets in recent research papers and provid

125 Dec 06, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022