PyTorch Personal Trainer: My framework for deep learning experiments

Related tags

Deep Learningptpt
Overview

Alex's PyTorch Personal Trainer (ptpt)

(name subject to change)

This repository contains my personal lightweight framework for deep learning projects in PyTorch.

Disclaimer: this project is very much work-in-progress. Although technically useable, it is missing many features. Nonetheless, you may find some of the design patterns and code snippets to be useful in the meantime.

Installation

Simply run python -m build in the root of the repo, then run pip install on the resulting .whl file.

No pip package yet..

Usage

Import the library as with any other python library:

from ptpt.trainer import Trainer, TrainerConfig
from ptpt.log import debug, info, warning, error, critical

The core of the library is the trainer.Trainer class. In the simplest case, it takes the following as input:

net:            a `nn.Module` that is the model we wish to train.
loss_fn:        a function that takes a `nn.Module` and a batch as input.
                it returns the loss and optionally other metrics.
train_dataset:  the training dataset.
test_dataset:   the test dataset.
cfg:            a `TrainerConfig` instance that holds all
                hyperparameters.

Once this is instantiated, starting the training loop is as simple as calling trainer.train() where trainer is an instance of Trainer.

cfg stores most of the configuration options for Trainer. See the class definition of TrainerConfig for details on all options.

Examples

An example workflow would go like this:

Define your training and test datasets:

transform=transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST('../data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('../data', train=False, download=True, transform=transform)

Define your model:

# in this case, we have imported `Net` from another file
net = Net()

Define your loss function that calls net, taking the full batch as input:

# minimising classification error
def loss_fn(net, batch):
    X, y = batch
    logits = net(X)
    loss = F.nll_loss(logits, y)

    pred = logits.argmax(dim=-1, keepdim=True)
    accuracy = 100. * pred.eq(y.view_as(pred)).sum().item() / y.shape[0]
    return loss, accuracy

Optionally create a configuration object:

# see class definition for full list of parameters
cfg = TrainerConfig(
    exp_name = 'mnist-conv',
    batch_size = 64,
    learning_rate = 4e-4,
    nb_workers = 4,
    save_outputs = False,
    metric_names = ['accuracy']
)

Initialise the Trainer class:

trainer = Trainer(
    net=net,
    loss_fn=loss_fn,
    train_dataset=train_dataset,
    test_dataset=test_dataset,
    cfg=cfg
)

Call trainer.train() to begin the training loop

trainer.train() # Go!

See more examples here.

Motivation

I found myself repeating a lot of same structure in many of my deep learning projects. This project is the culmination of my efforts refining the typical structure of my projects into (what I hope to be) a wholly reusable and general-purpose library.

Additionally, there are many nice theoretical and engineering tricks that are available to deep learning researchers. Unfortunately, a lot of them are forgotten because they fall outside the typical workflow, despite them being very beneficial to include. Another goal of this project is to transparently include these tricks so they can be added and removed with minimal code change. Where it is sane to do so, some of these could be on by default.

Finally, I am guilty of forgetting to implement decent logging: both of standard output and of metrics. Logging of standard output is not hard, and is implemented using other libraries such as rich. However, metric logging is less obvious. I'd like to avoid larger dependencies such as tensorboard being an integral part of the project, so metrics will be logged to simple numpy arrays. The library will then provide functions to produce plots from these, or they can be used in another library.

TODO:

  • Make a todo.

References

Citations

Owner
Alex McKinney
Student at Durham University. I do a variety of things. I use Arch btw
Alex McKinney
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
통일된 DataScience 폴더 구조 제공 및 가상환경 작업의 부담감 해소

Lucas coded by linux shell 목차 Mac버전 CookieCutter (autoenv) 1.How to Install autoenv 2.폴더 진입 시, activate 구현하기 3.폴더 탈출 시, deactivate 구현하기 4.Alias 설정하기 5

ello 3 Feb 21, 2022
Learning to Reach Goals via Iterated Supervised Learning

Vanilla GCSL This repository contains a vanilla implementation of "Learning to Reach Goals via Iterated Supervised Learning" proposed by Dibya Gosh et

Christoph Heindl 4 Aug 10, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
GEP (GDB Enhanced Prompt) - a GDB plug-in for GDB command prompt with fzf history search, fish-like autosuggestions, auto-completion with floating window, partial string matching in history, and more!

GEP (GDB Enhanced Prompt) GEP (GDB Enhanced Prompt) is a GDB plug-in which make your GDB command prompt more convenient and flexibility. Why I need th

Alan Li 23 Dec 21, 2022
Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label.

Tensorflow-Mobile-Generic-Object-Localizer Python Tensorflow 2 scripts for detecting objects of any class in an image without knowing their label. Ori

Ibai Gorordo 11 Nov 15, 2022
OOD Generalization and Detection (ACL 2020)

Pretrained Transformers Improve Out-of-Distribution Robustness How does pretraining affect out-of-distribution robustness? We create an OOD benchmark

littleRound 57 Jan 09, 2023
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
Qlib is an AI-oriented quantitative investment platform

Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment.

Microsoft 10.1k Dec 30, 2022
Meli Data Challenge 2021 - First Place Solution

My solution for the Meli Data Challenge 2021

Matias Moreyra 23 Mar 09, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
A GUI to automatically create a TOPAS-readable MLC simulation file

Python script to create a TOPAS-readable simulation file descriring a Multi-Leaf-Collimator. Builds the MLC using the data from a 3D .stl file.

Sebastian Schäfer 0 Jun 19, 2022
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
Exploring whether attention is necessary for vision transformers

Do You Even Need Attention? A Stack of Feed-Forward Layers Does Surprisingly Well on ImageNet Paper/Report TL;DR We replace the attention layer in a v

Luke Melas-Kyriazi 461 Jan 07, 2023
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022