Semi-supervised Learning for Sentiment Analysis

Overview

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining

Code, models and Datasets for《Neural Semi-supervised Learning for Text Classification Under Large-Scale Pretraining》.

Download Models and Dataset

Datasets and Models are found in the follwing list.

  • Download 3.4M IMDB movie reviews. Save the data at [REVIEWS_PATH]. You can download the dataset HERE.
  • Download the vanilla RoBERTa-large model released by HuggingFace. Save the model at [VANILLA_ROBERTA_LARGE_PATH]. You can download the model HERE.
  • Download in-domain pretrained models in the paper and save the model at [PRETRAIN_MODELS]. We provide three following models. You can download HERE.
    • init-roberta-base: RoBERTa-base model(U) trained over 3.4M movie reviews from scratch.
    • semi-roberta-base: RoBERTa-base model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-base model.
    • semi-roberta-large: RoBERTa-large model(Large U + U) trained over 3.4M movie reviews from the open-domain pretrained model RoBERTa-large model.
  • Download the 1M (D` + D) training dataset for the student model, save the data at [STUDENT_DATA_PATH]. You can download it HERE.
    • student_data_base: student training data generated by roberta-base teacher model
    • student_data_large: student training data generated by roberta-large teacher model
  • Download the IMDB dataset from Andrew Maas' paper. Save the data at [IMDB_DATA_PATH]. For IMDB, The training data and test data are saved in two separate files, each line in the file corresponds to one IMDB sample. You can download HERE.
  • Download shannon_preprocssor.whl to install a binarize tool. Save the .whl file at [SHANNON_PREPROCESS_WHL_PATH]. You can download HERE
  • Download the teacher model and student model that we trained. Save them at [CHECKPOINTS]. You can download HERE
    • roberta-base: teacher and student model checkpoint for roberta-base
    • roberta-large: teacher and student model checkpoint for roberta-large

Installation

pip install -r requirements.txt
pip install [SHANNON_PREPROCESS_WHL_PATH]

Quick Tour

train the roberta-large teacher model

Use the roberta model we pretrained over 3.4M reviews data to train teacher model.
Our teacher model had an accuracy rate of 96.2% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_teacher \
roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

train the roberta-large student model

Use the roberta model we pretrained over 3.4M reviews data to train student model.
Our student model had an accuracy rate of 96.8% on the test set.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

evaluate the student model on the test set

Load student model checkpoint to evaluate over test set to reproduce our result.

cd sstc/tasks/semi-roberta
python evaluate.py \
--checkpoint_path [CHECKPOINTS]/roberta-large/train_student_checkpoint/***.ckpt \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--batch_size=10 \
--gpus=0,

Reproduce paper results step by step

1.Train in-domain LM based on RoBERTa

1.1 binarize 3.4M reviews data

You should modify the shell according to your paths. The result binarize data will be saved in [REVIEWS_PATH]/bin

cd sstc/tasks/roberta_lm
bash binarize.sh

1.2 train RoBERTa-large (or small, as you wish) over 3.4M reviews data

cd sstc/tasks/roberta_lm
python trainer.py \
--roberta_path [VANILLA_ROBERTA_LARGE_PATH] \
--data_dir [REVIEWS_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [PRETRAIN_ROBERTA_CK_PATH] \
--val_check_interval 0.1 \
--precision 16 \
--batch_size 10 \
--distributed_backend=ddp \
--accumulate_grad_batches=50 \
--adam_epsilon 1e-6 \
--weight_decay 0.01 \
--warmup_steps 10000 \
--workers 8 \
--lr 2e-5

Training checkpoints will be saved in [PRETRAIN_ROBERTA_CK_PATH], find the best checkpoint and convert it to HuggingFace bin format, The relevant code can be found in sstc/tasks/roberta_lm/trainer.py. Save the pretrain bin model at [PRETRAIN_MODELS]\semi-roberta-large, or you can just download the model we trained.

2.train the teacher model

2.1 binarize IMDB dataset.

cd sstc/tasks/semi_roberta/scripts
bash binarize_imdb.sh

You can run the above code to binarize IMDB data, or you can just use the file we binarized in [IMDB_DATA_PATH]\bin

2.2 train the teacher model

cd sstc/tasks/semi_roberta
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] \
--precision 16 \
--batch_size 10 \
--min_epochs 10 \
--patience 3 \
--lr 3e-5  

After training, teacher model checkpoint will be save in [ROOT_SAVE_PATH]/train_teacher_checkpoint. The teacher model we trained had an accuracy rate of 96.2% on the test set. The download link of teacher model checkpoint can be found in quick tour part.

3.label the unlabeled in-domain data U

3.1 label 3.4M data

Use the teacher model that you trained in previous step to label 3.4M reviews data, notice that [ROOT_SAVE_PATH] should be the same as previous setting. The labeled data will be save in [ROOT_SAVE_PATH]\predictions.

cd sstc/tasks/roberta_lm
python trainer.py \
--mode train_teacher \
--roberta_path [PRETRAIN_ROBERTA_PATH] \
--reviews_data_path [REVIEWS_PATH]/bin \
--best_teacher_checkpoint_path [CHECKPOINTS]/roberta-large/train_teacher_checkpoint/***.ckpt \
--gpus=0,1,2,3 \
--save_path [ROOT_SAVE_PATH] 

3.2 select the top-K data points

Firstly, we random sample 3M data from 3.4M reviews data as U', then we select 1M data from U' with the highest score as D', finally, we concat the IMDB train data(D) and D' as train data for student model. The student train data will be saved in [ROOT_SAVE_PATH]\student_data\train.txt, or you can use the data we provide in [STUDENT_DATA_PATH]/student_data_large

cd sstc/tasks/roberta_lm
python data_selector.py \
--imdb_data_path [IMDB_DATA_PATH] \
--save_path [ROOT_SAVE_PATH] 

4.train the student model

4.1 binarize the dataset

You can use the same script in 3.1 to binarize student train data in [ROOT_SAVE_PATH]\student_data\train.txt

4.1 train the student model

use can use the training data we provide in [STUDENT_DATA_PATH]/student_data_large/bin or use your own training data in [ROOT_SAVE_PATH]\student_data\bin, make sure you set the right student_data_path.

cd sstc/tasks/semi-roberta
python trainer.py \
--mode train_student \
--roberta_path [PRETRAIN_MODELS]\semi-roberta-large \
--imdb_data_path [IMDB_DATA_PATH]/bin \
--student_data_path [STUDENT_DATA_PATH]/student_data_large/bin \
--save_path [ROOT_SAVE_PATH] \
--batch_size=10 \
--precision 16 \
--lr=2e-5 \
--warmup_steps 40000 \
--gpus=0,1,2,3,4,5,6,7 \
--accumulate_grad_batches=50

After training, student model checkpoint will be save in [ROOT_SAVE_PATH]/train_student_checkpoint. The student model we trained had an accuracy rate of 96.6% on the test set. The download link of student model checkpoint can be found in Quick tour part.

[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

Hong Wang 4 Dec 27, 2022
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Tech Resources for Academic Communities

Free tech resources for faculty, students, researchers, life-long learners, and academic community builders for use in tech based courses, workshops, and hackathons.

Microsoft 2.5k Jan 04, 2023
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Hieu Duong 7 Jan 12, 2022
DECA: Detailed Expression Capture and Animation (SIGGRAPH 2021)

DECA: Detailed Expression Capture and Animation (SIGGRAPH2021) input image, aligned reconstruction, animation with various poses & expressions This is

Yao Feng 1.5k Jan 02, 2023
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
PyTorch code accompanying our paper on Maximum Entropy Generators for Energy-Based Models

Maximum Entropy Generators for Energy-Based Models All experiments have tensorboard visualizations for samples / density / train curves etc. To run th

Rithesh Kumar 135 Oct 27, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Implementation of ResMLP, an all MLP solution to image classification, in Pytorch

ResMLP - Pytorch Implementation of ResMLP, an all MLP solution to image classification out of Facebook AI, in Pytorch Install $ pip install res-mlp-py

Phil Wang 178 Dec 02, 2022
PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021]

piglet PIGLeT: Language Grounding Through Neuro-Symbolic Interaction in a 3D World [ACL 2021] This repo contains code and data for PIGLeT. If you like

Rowan Zellers 51 Oct 08, 2022
This repository contains the code for the paper "Hierarchical Motion Understanding via Motion Programs"

Hierarchical Motion Understanding via Motion Programs (CVPR 2021) This repository contains the official implementation of: Hierarchical Motion Underst

Sumith Kulal 40 Dec 05, 2022
Kohei's 5th place solution for xview3 challenge

xview3-kohei-solution Usage This repository assumes that the given data set is stored in the following locations: $ ls data/input/xview3/*.csv data/in

Kohei Ozaki 2 Jan 17, 2022
Liver segmentation using MONAI and pytorch

Machine Learning use case in the field of Healthcare. In this project MONAI and pytorch frameworks are used for 3D Liver segmentation.

Abhishek Gajbhiye 2 May 30, 2022
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022