pix2pix in tensorflow.js

Overview

pix2pix in tensorflow.js

This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite

See a live demo here: https://yining1023.github.io/pix2pix_tensorflowjs/

Screen_Shot_2018_06_17_at_11_06_09_PM

Try it yourself: Download/clone the repository and run it locally:

git clone https://github.com/yining1023/pix2pix_tensorflowjs.git
cd pix2pix_tensorflowjs
python3 -m http.server

Credits: This project is based on affinelayer's pix2pix-tensorflow. I want to thank christopherhesse, nsthorat, and dsmilkov for their help and suggestions from this Github issue.

How to train a pix2pix(edges2xxx) model from scratch

    1. Prepare the data
    1. Train the model
    1. Test the model
    1. Export the model
    1. Port the model to tensorflow.js
    1. Create an interactive interface in the browser

1. Prepare the data

  • 1.1 Scrape images from google search
  • 1.2 Remove the background of the images
  • 1.3 Resize all images into 256x256 px
  • 1.4 Detect edges of all images
  • 1.5 Combine input images and target images
  • 1.6 Split all combined images into two folders: train and val

Before we start, check out affinelayer's Create your own dataset. I followed his instrustion for steps 1.3, 1.5 and 1.6.

1.1 Scrape images from google search

We can create our own target images. But for this edge2pikachu project, I downloaded a lot of images from google. I'm using this google_image_downloader to download images from google. After downloading the repo above, run -

$ python image_download.py <query> <number of images>

It will download images and save it to the current directory.

1.2 Remove the background of the images

Some images have some background. I'm using grabcut with OpenCV to remove background Check out the script here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/grabcut.py To run the script-

$ python grabcut.py <filename>

It will open an interactive interface, here are some instructions: https://github.com/symao/InteractiveImageSegmentation Here's an example of removing background using grabcut:

Screen Shot 2018 03 13 at 7 03 28 AM

1.3 Resize all images into 256x256 px

Download pix2pix-tensorflow repo. Put all images we got into photos/original folder Run -

$ python tools/process.py --input_dir photos/original --operation resize --output_dir photos/resized

We should be able to see a new folder called resized with all resized images in it.

1.4 Detect edges of all images

The script that I use to detect edges of images from one folder at once is here: https://github.com/yining1023/pix2pix-tensorflow/blob/master/tools/edge-detection.py, we need to change the path of the input images directory on line 31, and create a new empty folder called edges in the same directory. Run -

$ python edge-detection.py

We should be able to see edged-detected images in the edges folder. Here's an example of edge detection: left(original) right(edge detected)

0_batch2 0_batch2_2

1.5 Combine input images and target images

python tools/process.py --input_dir photos/resized --b_dir photos/blank --operation combine --output_dir photos/combined

Here is an example of the combined image: Notice that the size of the combined image is 512x256px. The size is important for training the model successfully.

0_batch2

Read more here: affinelayer's Create your own dataset

1.6 Split all combined images into two folders: train and val

python tools/split.py --dir photos/combined

Read more here: affinelayer's Create your own dataset

I collected 305 images for training and 78 images for testing.

2. Train the model

# train the model
python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

I used the High Power Computer(HPC) at NYU to train the model. You can see more instruction here: https://github.com/cvalenzuela/hpc. You can request GPU and submit a job to HPC, and use tunnels to tranfer large files between the HPC and your computer.

The training takes me 4 hours and 16 mins. After train, there should be a pikachu_train folder with checkpoint in it. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

3. Test the model

# test the model
python pix2pix.py --mode test --output_dir pikachu_test --input_dir pikachu/val --checkpoint pikachu_train

After testing, there should be a new folder called pikachu_test. In the folder, if you open the index.html, you should be able to see something like this in your browser:

Screen_Shot_2018_03_15_at_8_42_48_AM

Read more here: https://github.com/affinelayer/pix2pix-tensorflow#getting-started

4. Export the model

python pix2pix.py --mode export --output_dir /export/ --checkpoint /pikachu_train/ --which_direction BtoA

It will create a new export folder

5. Port the model to tensorflow.js

I followed affinelayer's instruction here: https://github.com/affinelayer/pix2pix-tensorflow/tree/master/server#exporting

cd server
python tools/export-checkpoint.py --checkpoint ../export --output_file static/models/pikachu_BtoA.pict

We should be able to get a file named pikachu_BtoA.pict, which is 54.4 MB. If you add --ngf 32 --ndf 32 when training the model: python pix2pix.py --mode train --output_dir pikachu_train --max_epochs 200 --input_dir pikachu/train --which_direction BtoA --ngf 32 --ndf 32, the model will be smaller 13.6 MB, and it will take less time to train.

6. Create an interactive interface in the browser

Copy the model we get from step 5 to the models folder.

Owner
Yining Shi
Creative Coding 👩‍💻+ Machine Learning 🤖
Yining Shi
Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling

TGraM Multi-Object Tracking in Satellite Videos with Graph-Based Multi-Task Modeling, Qibin He, Xian Sun, Zhiyuan Yan, Beibei Li, Kun Fu Abstract Rece

Qibin He 6 Nov 25, 2022
Multi Task RL Baselines

MTRL Multi Task RL Algorithms Contents Introduction Setup Usage Documentation Contributing to MTRL Community Acknowledgements Introduction M

Facebook Research 171 Jan 09, 2023
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
face_recognization (FaceNet) + TFHE (HNP) + hand_face_detection (Mediapipe)

SuperControlSystem Face_Recognization (FaceNet) 面部识别 (FaceNet) Fully Homomorphic Encryption over the Torus (HNP) 环面全同态加密 (TFHE) Hand_Face_Detection (M

liziyu0104 2 Dec 30, 2021
LAnguage Model Analysis

LAMA: LAnguage Model Analysis LAMA is a probe for analyzing the factual and commonsense knowledge contained in pretrained language models. The dataset

Meta Research 960 Jan 08, 2023
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
Automatically creates genre collections for your Plex media

Plex Auto Genres Plex Auto Genres is a simple script that will add genre collection tags to your media making it much easier to search for genre speci

Shane Israel 63 Dec 31, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
Efficient Online Bayesian Inference for Neural Bandits

Efficient Online Bayesian Inference for Neural Bandits By Gerardo Durán-Martín, Aleyna Kara, and Kevin Murphy AISTATS 2022.

Probabilistic machine learning 49 Dec 27, 2022
Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer

ConSERT Code for our ACL 2021 paper - ConSERT: A Contrastive Framework for Self-Supervised Sentence Representation Transfer Requirements torch==1.6.0

Yan Yuanmeng 478 Dec 25, 2022
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
Voila - Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
The hippynn python package - a modular library for atomistic machine learning with pytorch.

The hippynn python package - a modular library for atomistic machine learning with pytorch. We aim to provide a powerful library for the training of a

Los Alamos National Laboratory 37 Dec 29, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022