A whale detector design for the Kaggle whale-detector challenge!

Overview

CNN (InceptionV1) + STFT based Whale Detection Algorithm

So, this repository is my PyTorch solution for the Kaggle whale-detection challenge. The objective of this challenge was to basically do a binary classification, (hence really a detection), on the existance of whale signals in the water.

It's a pretty cool problem that resonates with prior work I have done in underwater perception algorithm design - a freakishly hard problem I may add. (The speed of sound changes on you, multiple reflections from the environment, but probably the hardest of all being that it's hard to gather ground-truth). (<--- startup idea? 💥 )

Anyway! My approach is to first transform the 1D acoustic time-domain signal into a 2D time-frequency representation via the Short-Time-Fourier-Transform (STFT). We do this in the following way:

(Where K_F is the raw number of STFT frequency bands, n is the discrete time index, m is the temporal index of each STFT pixel, x[n] the raw audio signal being transformed, and k representing the index of each STFT pixel's frequency). In this way, we break the signal down into it's constituent time-frequency energy cells, (which are now pixels), but more crucially, we get a representation that has distinct features across time and frequency that will be correlated with each other. This then makes it ripe for a Convolutional Neural Network (CNN) to chew into.

Here is what a whale-signal's STFT looks like:

Pos whale spectrogram

Similarly, here's what a signal's STFT looks like without any whale signal. (Instead, there seems to be some short-time but uber wide band interference at some point in time).

Neg whale spectrogram

It's actually interesting, because there are basically so many more ways in which a signal can manifest itself as not a whale signal, VS as actually being a whale signal. Does that mean we can also frame the problem as learning the manifold of whale-signals and simply do outlier analysis on that? Something to think about. :)

Code Usage:

Ok - let us now talk about how to use the code:

The first thing you need to do is install PyTorch of course. Do this from here. I use a conda environment as they recommend, and I recommend you do the same.

Once this is done, activate your PyTorch environment.

Now we need to download the raw data. You can get that from Kaggle's site here. Unzip this data at a directory of your choosing. For the purpose of this tutorial, I am going to assume that you placed and unzipped the data as such: /Users/you/data/whaleData/. (We will only be using the training data so that we can split it into train/val/test. The reason is that we do not have access to Kaggle's test labels).

We are now going to do the following steps:

  • Convert the audio files into numpy STFT tensors:
    • python whaleDataCreatorToNumpy.py -s 1 -dataDir /Users/you/data/whaleData/train/ -labelcsv /Users/you/data/whaleData/train.csv -dataDirProcessed /Users/you/data/whaleData/processedData/ -ds 0.42 -rk 20 200
    • The -s 1 flag says we want to save the results, the -ds 0.42 says we want to downsample the STFT image by this amount, (to help with computation time), and the -rk 20 200 says that we want the "rows kept" to be indexed from 20 to 200. This is because the STFT is conjugate symmetric, but also because we make a determination by first swimming in the data, (I swear this pun is not intentional), that most of the informational content lies between those bands. (Again, the motivation is computational here as well).
  • Convert and split the STFT tensors into PyTorch training/val/test Torch tensors:
    • python whaleDataCreatorNumpyToTorchTensors.py -numpyDataDir /Users/you/data/whaleData/processedData/
    • Here, the original numpy tensors are first split and normalized, and then saved off into PyTorch tensors. (The split percentages are able to be user defined, I set the defaults set 20% for validation and 10% test). The PyTorch tensors are saved in the same directory as above.
  • Run the CNN classifier!
    • We are now ready to train the classifier! I have already designed an Inception-V1 CNN architecture, that can be loaded up automatically, and we can use this as so. The input dimensions are also guaranteed to be equal to the STFT image sizes here. At any rate, we do this like so:
    • python whaleClassifier.py -dataDirProcessed /Users/you/data/whaleData/processedData/ -g 0 -e 1 -lr 0.0002 -L2 0.01 -mb 4 -dp 0 -s 3 -dnn 'inceptionModuleV1_75x45'
    • The g term controls whether or not we want to use a GPU to trian, e controls the number of epochs we want to train over, lr is the learning rate, L2 is the L2 penalization amount for regularization, mb is the minibatch size, (which will be double this as the training composes a mini-batch to have an equal number of positive and negative samples), dp controls data parallelism (moot without multiple GPUs, and is really just a flag on whether or not to use multiple GPUs), s controls when and how often we save the net weights and validation losses, (option 3 saves the best performing model), and finally, -dnn is a flag that controls which DNN architecture we want to use. In this way, you can write your own DNN arch, and then simply call it by whatever name you give it for actual use. (I did this after I got tired of hard-coding every single DNN I designed).
    • If everything is running smoothly, you should see something like this as training progresses:
    • The "time" here just shows how long it takes between the reporting of each validation score. (Since I ran this on my CPU, it's 30 seconds / report, but expect this to be at least an order of magnitude faster on a respectable GPU).
  • Evauluate the results!
    • When your training is complete, you can then then run this script to give you automatically generated ROC and PR curves for your network's performance:
    • python resultsVisualization.py -dataDirProcessed /Users/you/data/whaleData/processedData/ -netDir .
    • After a good training session, you should get results that look like so:
    • I also show the normalized training / validation likelihoods and accuracies for the duration of the session:

So wow! An AUC of 0.9669! Not too shabby! Can still be improved, but considering the data looks like this below, our InceptionV1-CNN isn't doing too bad either. 💥

Owner
Tarin Ziyaee
Eng Manager @Facebook FRL neural interfaces | Director R&D @CTRL-labs neural inferfaces. | CTO @Voyage, autonomous vehicles | Perception @Apple Autonomous
Tarin Ziyaee
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Implementation of Deep Deterministic Policy Gradiet Algorithm in Tensorflow

ddpg-aigym Deep Deterministic Policy Gradient Implementation of Deep Deterministic Policy Gradiet Algorithm (Lillicrap et al.arXiv:1509.02971.) in Ten

Steven Spielberg P 247 Dec 07, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
A mini-course offered to Undergrad chemistry students

The best way to use this material is by forking it by click the Fork button at the top, right corner. Then you will get your own copy to play with! Th

Raghu 19 Dec 19, 2022
Unified Interface for Constructing and Managing Workflows on different workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow.

Couler What is Couler? Couler aims to provide a unified interface for constructing and managing workflows on different workflow engines, such as Argo

Couler Project 781 Jan 03, 2023
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
Attentional Focus Modulates Automatic Finger‑tapping Movements

"Attentional Focus Modulates Automatic Finger‑tapping Movements", in Scientific Reports

Xingxun Jiang 1 Dec 02, 2021
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Ibai Gorordo 2 Oct 04, 2021
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Official code of ICCV2021 paper "Residual Attention: A Simple but Effective Method for Multi-Label Recognition"

CSRA This is the official code of ICCV 2021 paper: Residual Attention: A Simple But Effective Method for Multi-Label Recoginition Demo, Train and Vali

163 Dec 22, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Its a Plant Leaf Disease Detection System based on Machine Learning.

My_Project_Code Its a Plant Leaf Disease Detection System based on Machine Learning. I have used Tomato Leaves Dataset from kaggle. This system detect

Sanskriti Sidola 3 Jun 15, 2022