RLBot Python bindings for the Rust crate rl_ball_sym

Overview

RLBot Python bindings for rl_ball_sym 0.6

Prerequisites:

Steps to build the Python bindings

  1. Download this repository
  2. Run cargo_build_release.bat
  3. A new file, called rl_ball_sym.pyd, will appear
  4. Copy rl_ball_sym.pyd to your Python project's source folder
  5. import rl_ball_sym in your Python file

Basic usage in an RLBot script to render the path prediction

See script.cfg and script.py for a pre-made script that renders the framework's ball path prediction in green and the rl_ball_sym's ball path prediction in red.

from traceback import print_exc

from rlbot.agents.base_script import BaseScript
from rlbot.utils.structures.game_data_struct import GameTickPacket

import rl_ball_sym as rlbs


class rl_ball_sym(BaseScript):
    def __init__(self):
        super().__init__("rl_ball_sym")

    def main(self):
        rlbs.load_soccar()

        while 1:
            try:
                self.packet: GameTickPacket = self.wait_game_tick_packet()
                current_location = self.packet.game_ball.physics.location
                current_velocity = self.packet.game_ball.physics.velocity
                current_angular_velocity = self.packet.game_ball.physics.angular_velocity

                rlbs.set_ball({
                    "time": self.packet.game_info.seconds_elapsed,
                    "location": [current_location.x, current_location.y, current_location.z],
                    "velocity": [current_velocity.x, current_velocity.y, current_velocity.z],
                    "angular_velocity": [current_angular_velocity.x, current_angular_velocity.y, current_angular_velocity.z],
                })

                path_prediction = rlbs.get_ball_prediction_struct()

                self.renderer.begin_rendering()
                self.renderer.draw_polyline_3d(tuple((path_prediction["slices"][i]["location"][0], path_prediction["slices"][i]["location"][1], path_prediction["slices"][i]["location"][2]) for i in range(0, path_prediction["num_slices"], 4)), self.renderer.red())
                self.renderer.end_rendering()
            except Exception:
                print_exc()


if __name__ == "__main__":
    rl_ball_sym = rl_ball_sym()
    rl_ball_sym.main()

Example ball prediction struct

Normal

[
    {
        "time": 0.008333,
        "location": [
            -2283.9,
            1683.8,
            323.4,
        ],
        "velocity": [
            1273.4,
            -39.7,
            757.6,
        ]
    },
    {
        "time": 0.025,
        "location": [
            -2262.6,
            1683.1,
            335.9,
        ],
        "velocity": [
            1272.7,
            -39.7,
            746.4,
        ]
    }
    ...
]

Full

[
    {
        "time": 0.008333,
        "location": [
            -2283.9,
            1683.8,
            323.4,
        ],
        "velocity": [
            1273.4,
            -39.7,
            757.6,
        ]
        "angular_velocity": [
            2.3,
            -0.8,
            3.8,
        }
    },
    {
        "time": 0.016666,
        "location": [
            -2273.3,
            1683.4,
            329.7,
        ],
        "velocity": [
            1273.1,
            -39.7,
            752.0,
        ],
        "angular_velocity": [
            2.3,
            -0.8,
            3.8
        ]
    }
    ...
]

__doc__

Returns the string rl_ball_sym is a Rust implementation of ball path prediction for Rocket League; Inspired by Samuel (Chip) P. Mish's C++ utils called RLUtilities

load_soccar

Loads in the field for a standard soccar game.

load_dropshot

Loads in the field for a standard dropshot game.

load_hoops

Loads in the field for a standard hoops game.

set_ball

Sets information related to the ball. Accepts a Python dictionary. You don't have to set everything - you can exclude keys at will.

time

The seconds that the game has elapsed for.

location

The ball's location, in an array in the format [x, y, z].

velocity

The ball's velocity, in an array in the format [x, y, z].

angular_velocity

The ball's angular velocity, in an array in the format [x, y, z].

radius

The ball's radius.

Defaults:

  • Soccar - 91.25
  • Dropshot - 100.45
  • Hoops - 91.25

collision_radius

The ball's collision radius.

Defaults:

  • Soccar - 93.15
  • Dropshot - 103.6
  • Hoops - 93.15

set_gravity

Sets information about game's gravity.

Accepts an array in the format [x, y, z].

step_ball

Steps the ball by 1/120 seconds into the future every time it's called.

For convience, also returns the new information about the ball.

Example:

{
    "time": 0.008333,
    "location": [
        -2283.9,
        1683.8,
        323.4,
    ],
    "velocity": [
        1273.4,
        -39.7,
        757.6,
    ]
    "angular_velocity": [
        2.3,
        -0.8,
        3.8,
    }
}

get_ball_prediction_struct

Equivalent to calling step_ball() 720 times (6 seconds).

Returns a normal-type ball prediction struct.

get_ball_prediction_struct takes 0.3ms to execute

get_ball_prediction_struct_full

Equivalent to calling step_ball() 720 times (6 seconds).

Returns a full-type ball prediction struct.

get_ball_prediction_struct_full takes 0.54ms to execute

get_ball_prediction_struct_for_time

Equivalent to calling step_ball() 120 * time times.

Returns a normal-type ball prediction struct.

time

The seconds into the future that the ball path prediction should be generated.

get_ball_prediction_struct_full_for_time

Equivalent to calling step_ball() 120 * time times.

Returns a full-type ball prediction struct.

time

The seconds into the future that the ball path prediction should be generated.

You might also like...
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

A fast python implementation of Ray Tracing in One Weekend using python and Taichi
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

Technical Indicators implemented in Python only using Numpy-Pandas as Magic  - Very Very Fast! Very tiny!  Stock Market Financial Technical Analysis Python library .  Quant Trading automation or cryptocoin exchange
Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! Very tiny! Stock Market Financial Technical Analysis Python library . Quant Trading automation or cryptocoin exchange

MyTT Technical Indicators implemented in Python only using Numpy-Pandas as Magic - Very Very Fast! to Stock Market Financial Technical Analysis Python

This is an open source python repository for various python tests

Welcome to Py-tests This is an open source python repository for various python tests. This is in response to the hacktoberfest2021 challenge. It is a

Composable transformations of Python+NumPy programsComposable transformations of Python+NumPy programs

Chex Chex is a library of utilities for helping to write reliable JAX code. This includes utils to help: Instrument your code (e.g. assertions) Debug

Automatic self-diagnosis program (python required)Automatic self-diagnosis program (python required)

auto-self-checker 자동으로 자가진단 해주는 프로그램(python 필요) 중요 이 프로그램이 실행될때에는 절대로 마우스포인터를 움직이거나 키보드를 건드리면 안된다(화면인식, 마우스포인터로 직접 클릭) 사용법 프로그램을 구동할 폴더 내의 cmd창에서 pip

POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project
Space-invaders - Simple Game created using Python & PyGame, as my Beginner Python Project

Space Invaders This is a simple SPACE INVADER game create using PYGAME whihc hav

Releases(v1.0.0)
Owner
Eric Veilleux
I know HTML/CSS/JS, Java, Python, C, and Rust.
Eric Veilleux
Epidemiology analysis package

zEpid zEpid is an epidemiology analysis package, providing easy to use tools for epidemiologists coding in Python 3.5+. The purpose of this library is

Paul Zivich 111 Jan 08, 2023
Code accompanying the paper "How Tight Can PAC-Bayes be in the Small Data Regime?"

How Tight Can PAC-Bayes be in the Small Data Regime? This is the code to reproduce all experiments for the following paper: @inproceedings{Foong:2021:

5 Dec 21, 2021
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
Like a cowsay but without cows!

Foxsay This is a simple program that generates pictures of a cute fox with a message. It is like a cowsay but without cows! Fox girls are better! Usag

Anastasia Kim 28 Feb 20, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
FIRA: Fine-Grained Graph-Based Code Change Representation for Automated Commit Message Generation

FIRA is a learning-based commit message generation approach, which first represents code changes via fine-grained graphs and then learns to generate commit messages automatically.

Van 21 Dec 30, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/temporal/spatiotemporal databases

Introduction PAMI stands for PAttern MIning. It constitutes several pattern mining algorithms to discover interesting patterns in transactional/tempor

RAGE UDAY KIRAN 43 Jan 08, 2023
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023