Audio2midi - Automatic Audio-to-symbolic Arrangement

Related tags

Audioaudio2midi
Overview

Automatic Audio-to-symbolic Arrangement

This is the repository of the project "Audio-to-symbolic Arrangement via Cross-modal Music Representation Learning" by Ziyu Wang, Dejing Xu, Gus Xia and Ying Shan (arXiv:2112.15110).

Model Overview

We propose an audio-to-symbolic generative model to transfer an input audio to its piano arrangement (in MIDI format). The task is similar to piano cover song production based on the original pop songs, or piano score reduction based on a classical symphony.

The input audio is a pop-song audio under arbitrary instrumentation. The output is a MIDI piano arrangement of the original audio which keeps most musical information (incdluding chord, groove and lead melody). The model is built upon the previous projects including EC2-VAE, PianoTree VAE, and Poly-Dis. The novelty of this study is the cross-modal representation disentanglement design and the 3-step training strategy shown below.

workflow

Application

This audio-to-symbolic conversion and arrangement module can lead to many applications (e.g., music score generation, automatic acccompaniment etc.) In this project, we demonstrate a specific application: audio-level pop style transfer, in which we transfer a pop song "vocal + (full band) accompaniment" to "vocal + piano accompaniment". The automation is an integration of spleeter source separation, audio-to-symbolic conversion, performance rendering, and synthesis (as shown in the diagram below).

style_transfer_app

Quick Start

In demo/audio2midi_out we presents generated results in separated song folders. In each song folder, there is a MIDI file and an audio file.

  • The MIDI file is the generated piano arrangement by our model (with rule-based performance rendering).
  • The audio file is a combination of the generated piano arragement and the original vocal (separated by Spleeter) using GarageBand.

In this section, we demonstrate how to use our model to reproduce the demo. Later on, you can generate piano arrangement with your own inputs.

Step One: Prepare the python environment specified by requirements.txt.

Step Two: Download the pre-trained model parameter files and put them under params. (Link)

Step Three: Source separation the audio files at demo/example_audio using Spleeter and output the results at demo/spleeter_out (see the original repository for more detail). If you do not want to run Spleeter right now, we have prepare the seprated result for you at demo/spleeter_out.

Step Four: Run the following command at the project root directory:

python scripts/inference_pop_style_transfer.py ./demo/spleeter_out/example1/accompaniment.wav ./demo/audio2midi_out/example1
python scripts/inference_pop_style_transfer.py ./demo/spleeter_out/example2/accompaniment.wav ./demo/audio2midi_out/example2

Here, the first parameter after inference_pop_style_transfer.py is the input audio file path, and the second parameter is the output MIDI folder. The command also allows applying different models, switching autoregressive mode, and many other options. See more details by

python scripts/inference_pop_style_transfer.py -h

The generated MIDI files can be found at demo/audio2midi_out. Then, the MIDI arrangement and vocal audio can be combined and further processed in the DAW.

Project Details

Before discussing the audio-to-midi conversion in more detail, we introduce different models and training stages that can be specified in the command.

Model Types

There are four model types (or model_id):

  • (a2s): the proposed model (requiring chord extraction because it learns disentangled latent chord representation).
  • (a2s-nochd): the proposed model without chord latent representation (i.e., removing chord encoder or chord decoder).
  • (supervised): pure supervised training (audio encoder + symbolic decoder (without symbolic feature decoding)). No resampling and KL penalty.
  • (supervised+kl): model architecture is same as supervised. Resampling and KL penalty is applied (to audio-texture representation).

In general, a2s and a2s-nochd perform the best as they are the proposed models. The rest are baseline models in the paper. (Note: the other baseline model (Chord-based generation) is not implemented because it does not depend on any audio information.)

Stages (Autoregressive Mode)

As shown in the diagram above, a2s and a2s-nochd have 3 training stages, where stage 1 and 2 are not ready to be used, and stage 3 has two options (i.e., pure audio-based and autoregression).

  • (Stage 3a): pure audio-based. The model input is the audio itself.
  • (Stage 3b): autoregression. The model input is the audio itself and previous 2-measure output.

During inference, autoregressive=True mode means we use a stage 3b model auto regressively, and use stage 3a model to compute the initial segment. On the other hand, autoregressive=False model means we use a stage 3a model to arrangement every 2-measure segment independently. In general, autoregressive=False gives output of slightly higher quality.

Audio2midi Command

Run audio2midi in command line using the command:

python scripts/inference_pop_style_transfer.py <input_acc_audio_path> <output_midi_folder_path>

Note: the command should be run at the project root directory. For clarity, the user can only specify the output MIDI folder (where possibly multiple versions of MIDI arrangement will be produced in the same folder). To specify output MIDI filename, see the python interfance section below.

The command has the following functions:

  1. To specify model_id using -m or --model (default to be a2s), e.g.,

    python scripts/inference_pop_style_transfer.py <input_acc_audio_path> <output_midi_folder_path> --model a2s-nochd
    
  2. To turn on autoregressive mode using -a or --auto (detault to be autoregressive=False), e.g.,

    python scripts/inference_pop_style_transfer.py <input_acc_audio_path> <output_midi_folder_path> --auto
    
  3. By default, the beat and chord analysis (a preprocessing step by madmom) will be applied to the separated accompaniment track. The analysis can also be applied to the original audio using -o or --original, (though there are usually no aparent difference), e.g.,

    python scripts/inference_pop_style_transfer.py <input_acc_audio_path> <output_midi_folder_path> --original <input_audio_path>
    
  4. At the early stage of this research, we only have stage 3a and stage 3b has not been developed yet. We provide the model parameter of the old stage 3a model and name it after the alternative model. The generation results also sound good in general. The alternative model can be called by --alt, e.g.,

    python scripts/inference_pop_style_transfer.py <input_acc_audio_path> <output_midi_folder_path> --alt
    

    Alternative model can be also called in autoregressive mode, where the model for initial computation will be replaced with the alternation.

  5. To run through all the model types, autoregressive modes and alternative models, using --model all, e.g.,

    python scripts/inference_pop_style_transfer.py <input_acc_audio_path> <output_midi_folder_path> --model all
    

For more detail, check it out using

python scripts/inference_pop_style_transfer.py -h

Audio2midi Python Interface

To use the model in a more flexible fashion (e.g., use your own trained model parameter, combine the a2s routine in your project, or run multiple files at a time), we provide the python interface. Specifically, call the functions in the pop_style_transfer package. For example, in a python script outside this project, we can write the following python code:

from audio2midi.pop_style_transfer import acc_audio_to_midi, load_model

model, model0 = load_model(model_id='a2s', 
                           autoregressive=False,
                           alt=False
                          )

acc_audio_to_midi(input_acc_audio_path=...,
                  output_midi_path=...,
                  model=model, 
                  model0=model0,
                  input_audio_path=..., 
                  input_analysis_npy_path=...,
                  save_analysis_npy_path=..., 
                  batch_size=...
                 )

Note: Unlike in the command line mode where output location can only be a folder directory, we can specify filename in the python interface. Also, chord and beat preprocessing can be loaded or stored, and batch size can be chaged.

Data

We use the POP909 dataset and its time-aligned audio files. The audio files are colloected from the internet. The data should be processed and put under the data folder. Specifically, there are 4 sub-folders:

  • data/audio-midi-combined: contain 909 folders of 909 songs. In ecah folder, we have
    • audio.mp3 the original audio
    • midi folder containing the MIDI arrangement and annotation files.
    • split audio folder containing the vocal-accompaniment separation result using spleeter:2stems model.
  • data/quantized_pop909_4_bin: containing 909 npz files storing pre-processed symbolic data from MIDI and annotation files.
  • data/audio_stretched: containing 909 pairs of wav and pickle files storing the accompaniment audio time-stretched to 13312 frames per (symbolic) beat under 22050 sample rate (approximately 99.384 bpm).
  • data/train_split: containing a pickle file for train and valid split ids at song level.

The pre-processed symbolic-part of the dataset (i.e., quantized_pop909_4_bin and train_split can be downloaded at link.

Training the model

To train the model, run the scripts in ./scripts/run*.py, at project root directory. The result will be saved in the result folder. The model should be trained in a sequential manner. For example, run

python ./scripts/run_a2s_stage1.py

When the stage i model is trained, put the model parameter file path in line 13 of /scripts/run_a2s_stage{j}.py, and run

python ./scripts/run_a2s_stage{j}.py

Here, (i, j) can be (i=1, j=2), (i=2, j=3), (i=2, j=4). (3 for stage 3a and 4 for stage 3b). The other model types can be run in a similar fashion. The training result can be downloaded at link.

Summary of Materials to Download

References

Owner
Ziyu Wang
Computer music, Deep Music Generation & Artificial musical intelligence
Ziyu Wang
An AI for Music Generation

An AI for Music Generation

Hao-Wen Dong 1.3k Dec 31, 2022
Conferencing Speech Challenge

ConferencingSpeech 2021 challenge This repository contains the datasets list and scripts required for the ConferencingSpeech challenge. For more detai

73 Nov 29, 2022
🎵 A repository for manually annotating files to create labeled acoustic datasets for machine learning.

🎵 A repository for manually annotating files to create labeled acoustic datasets for machine learning.

Jim Schwoebel 28 Dec 22, 2022
:speech_balloon: SpeechPy - A Library for Speech Processing and Recognition: http://speechpy.readthedocs.io/en/latest/

SpeechPy Official Project Documentation Table of Contents Documentation Which Python versions are supported Citation How to Install? Local Installatio

Amirsina Torfi 870 Dec 27, 2022
Scrap electronic music charts into CSV files

musiccharts A small python script to scrap (electronic) music charts into directories with csv files. Installation Download MusicCharts.exe Run MusicC

Dustin Scharf 1 May 11, 2022
A telegram bot for which is help to play songs in vc 🥰 give 🌟 and fork this repo before use 😏

TamilVcMusic 🌟 TamilVCMusicBot 🌟 Give your 💙 Before clicking on deploy to heroku just click on fork and star just below How to deploy Click the bel

TamilBots 150 Dec 13, 2022
Analyze, visualize and process sound field data recorded by spherical microphone arrays.

Sound Field Analysis toolbox for Python The sound_field_analysis toolbox (short: sfa) is a Python port of the Sound Field Analysis Toolbox (SOFiA) too

Division of Applied Acoustics at Chalmers University of Technology 69 Nov 23, 2022
Audio2midi - Automatic Audio-to-symbolic Arrangement

Automatic Audio-to-symbolic Arrangement This is the repository of the project "A

Ziyu Wang 24 Dec 05, 2022
A Music Player Bot for Discord Servers

A Music Player Bot for Discord Servers

Halil Acar 2 Oct 25, 2021
Implementation of "Slow-Fast Auditory Streams for Audio Recognition, ICASSP, 2021" in PyTorch

Auditory Slow-Fast This repository implements the model proposed in the paper: Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, Dima Damen, Slow-Fa

Evangelos Kazakos 57 Dec 07, 2022
PianoPlayer - Automatic fingering generator for piano scores

PianoPlayer - Automatic fingering generator for piano scores

Marco Musy 571 Jan 02, 2023
A python wrapper for REAPER

pyreaper A python wrapper for REAPER (Robust Epoch And Pitch EstimatoR) Installation pip install pyreaper Demonstration notebnook http://nbviewer.jupy

Ryuichi Yamamoto 56 Dec 27, 2022
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling

MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling Demos | Blog Post | Colab Notebook | Paper | MIDI-DDSP is a hierarchical

Magenta 239 Jan 03, 2023
pedalboard is a Python library for adding effects to audio.

pedalboard is a Python library for adding effects to audio. It supports a number of common audio effects out of the box, and also allows the use of VST3® and Audio Unit plugin formats for third-party

Spotify 3.9k Jan 02, 2023
The project aims to develop a personal-assistant for Windows & Linux-based systems

The project aims to develop a personal-assistant for Windows & Linux-based systems. Samiksha draws its inspiration from virtual assistants like Cortana for Windows, and Siri for iOS. It has been desi

SHUBHANSHU RAI 1 Jan 16, 2022
PyAbsorp is a python module that has the main focus to help estimate the Sound Absorption Coefficient.

This is a package developed to be use to find the Sound Absorption Coefficient through some implemented models, like Biot-Allard, Johnson-Champoux and

Michael Markus Ackermann 8 Oct 19, 2022
Marsyas - Music Analysis, Retrieval and Synthesis for Audio Signals

Welcome to MARSYAS. MARSYAS is a software framework for rapid prototyping of audio applications, with flexibility and extensibility as primary concer

Marsyas Developers Group 364 Oct 31, 2022
GNOME powered sound conversion

SoundConverter A simple sound converter application for the GNOME environment. It reads anything the GStreamer library can read, and writes Ogg Vorbis

Gautier Portet 188 Dec 17, 2022
Telegram Bot to play music in VoiceChat with Channel Support and autostarts Radio.

VCPlayerBot Telegram bot to stream videos in telegram voicechat for both groups and channels. Supports live streams, YouTube videos and telegram media

Abdisamad Omar Mohamed 1 Oct 15, 2021
Audio pitch-shifting & re-sampling utility, based on the EMU SP-1200

Pitcher.py Free & OS emulation of the SP-12 & SP-1200 signal chain (now with GUI) Pitch shift / bitcrush / resample audio files Written and tested in

morgan 13 Oct 03, 2022