Testbed of AI Systems Quality Management

Overview

qunomon

Description

A testbed for testing and managing AI system qualities.

Demo

Sorry. Not deployment public server at alpha version.

Requirement

Installation prerequisites

Support os is Windows10 Pro and macOS.

  • Windows10 Pro 1909 later
  • macOS v10.15 later

Installation

Usage

1.launch

Execute the following command as root of this repository.

docker-compose up

2.access web browser

http://127.0.0.1:8888/

Development for windows

Installation

1.PackageManager

  • Launch powershell with administrator permission.

  • powershell

    Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))
    

2.Python

  • powershell
    cinst python --version=3.6.8 -y
    

Setup python virtual environment for Backend

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\backend
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r requirements_dev.txt

Setup python virtual environment for IP

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\integration-provider
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r constraints.txt

launch by without container

1.execute bat file

start_up.bat

2.checking web browser

http://127.0.0.1:8080/

3.checking Backend

  • powershell
    curl http://127.0.0.1:5000/qai-testbed/api/0.0.1/health-check
    

4.checking IP

  • powershell
    curl http://127.0.0.1:6000/qai-ip/api/0.0.1/health-check
    

Contribution

Bug reports and pull requests are welcome on GitHub at aistairc/qunomon.

Disclaimer

qunomon is an OSS and alpha version. so qunomon may cause damage to your system and data. You agree to use it at your own risk.

License

Apache License Version 2.0

Author

AIST

You might also like...
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Releases(0.1.15)
  • 0.1.15(Jun 25, 2021)

  • 0.1.14(Jun 8, 2021)

    Added

    #1462 SHAP AITの実装とテスト alyz_regression_shap_0.1 #1485 SHAP AIT plots_scatterの出力figにタイトル(カラムを対象)追加

    Fixed

    #1492 Dependabot alerts対応(urllib3) #1476 Dependabot alerts対応(TensorFlow2.4系から変更) #1465 AITパラメータ見直し(eval_adversarial_example_acc_test_tf2.3_0.1)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.13(May 26, 2021)

    Added

    #1434 クライテリア範囲外でTDを作成できないようにする(バックエンド) #1435 クライテリア範囲外でTDを作成できないようにする(フロントエンド) #1436 パラメータ範囲外でTDを作成できないようにする(フロントエンド) #1437 パラメータ範囲外でTDを作成できないようにする(バックエンド) #1438 インベントリチェック 警告ポップアップを表示する(フロントエンド) #1440 インベントリチェック ファイルフォーマットチェック(一般)

    Fixed

    #1423 AITパラメータ見直し(eval_dnn_coverage_tf1.13_0.1) #1425 AITパラメータ見直し(eval_mnist_acc_tf2.3_0.1) #1454 DependencyAlert解消(5/12)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.12(May 12, 2021)

    Added

    #1416 インベントリチェック ファイル存在チェック #1421 インベントリチェック TD実行時ハッシュチェック

    Fixed

    #1362 #1213の変更部分をテストコードに反映させる #1403 AIT発生エラー見直し AIT-SDK入れ替え #1432 GET TestRunnerでエンコードエラーログが出力される #1442 docker起動でインベントリ登録ができない #1447 DependencyAlert解消(5/10) #1452 pipインストールモジュールのバージョンを固定化する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.11(Apr 28, 2021)

    Added

    #1370 AITの更新 (AITのパラメータ上限下限を表示する) #1374 ait-installerの更新 (AITのパラメータ上限下限を表示する)

    Fixed

    #1402 AIT発生エラー見直し AIT-SDK修正 #1404 AIT発生エラー見直し IP修正 #1405 AIT発生エラー見直し バックエンド修正 #1406 AIT発生エラー見直し フロントエンド修正 #1416 AIT発生エラー見直し AIT-SDK修正(出力先フォルダがない場合に対応)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.10(Apr 14, 2021)

    Added

    #1349 [TF3]MLComponent一覧画面でMLComponentを削除できるようにしたい

    Fixed

    #1385 DependencyAlert解消(3/26) #1391 DependencyAlert解消(4/2) #1361 #1335 により変更された部分をWEB API仕様書に反映をさせる

    Source code(tar.gz)
    Source code(zip)
  • 0.1.9(Mar 26, 2021)

    Added

    #1335 AITのパラメータ上限下限を表示する #144 TestDescription一覧画面の日付指定をカレンダーを用いて行う機能の実装

    Fixed

    なし

    Source code(tar.gz)
    Source code(zip)
  • 0.1.8(Mar 12, 2021)

    Added

    #1212 TD詳細画面-グラフを複数選択して追加したい #1340 TD詳細画面でairflowのログダウンロードURLリンクを表示する #1342 グラフ複数選択時に未登録のものだけを登録したい #1347 [TF3]TD一覧画面でTDを削除できるようにしたい

    Fixed

    #1331 何も選択していない状態で「add to Report」ボタンを押下できてしまう #1337 活性化判定をcheckAddBTNActiveメソッドで対応させるよう処理を統一 #1345 [TD詳細画面]追加グラフの数チェック不整合 #1348 [TD編集画面1]TDの再編集時にTD名のテキストボックスが入力1文字ごとにフォーカスが外れる #1336 docker-compose実行時に、ait-installerが実行されてない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.7(Feb 26, 2021)

  • 0.1.6(Feb 12, 2021)

    Added

    #1200 AIF360の指標を取り込んだAITを作成する #1211 TD詳細画面-どのグラフを選択中か分かるようにしたい #1248 ait.manifest.jsonのreport.measuresにminとmaxを書く

    Fixed

    #1300 jupyter新バージョン3.X以後、AITのset_ait_descriptionにUnicodeEncodeError (漢字、など) #1305 TDでのレポート使用グラフを一つ削除すると、ソートがリセットされる #1312 Dependency alert解消(2/4)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.5(Jan 29, 2021)

    Added

    #1199 TDの品質指標に何を入れれば良いか分かりにくい問題を解消する #1213 [サマリ]manifestのresources,downloadsからpathを削除する

    Fixed

    #1262 eval_bdd100k_aicc_tf2.3のリソース「all_label_accuracy_csv」がタイプ「text」になっている #1272 ローカルにAITイメージがない状態で実行するとairflowでエラーになる #1277 Dependabot alerts解消(2021/1/15)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.4(Jan 15, 2021)

    Added

    #1213 manifestのresources,downloadsからpathを削除する

    Fixed

    #1208 レポートのレーダーチャートが、品質特性2以下だと数量が判別できない #1254 レポートのレーダーチャートの表示範囲が5で固定 #1260 Dependabot alerts解消(2021/1/8)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(Dec 25, 2020)

    Added

    #1166 qlib新規作成

    Fixed

    #1183 TestDescriptionの中で大量の画像を扱うと画面が応答しない #1198 フロントエンド誤字修正 #1203 AITでresoucesに大量のデータをセットすると、TestDescription詳細画面やレポート出力が応答しない #1242 measures無しのAITを登録するとQualityDimensionが反映されない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.2(Dec 10, 2020)

    Added

    #1171 インベントリの選択方法を改善する #1173 レポートのサマリでTD0件の品質特性は出力対象にしないようにする

    Fixed

    #1187 レポート出力時に2.1のレーダーチャートの項目名が長すぎると途中で切れる #1184 airflowのdocker buildが失敗する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Nov 27, 2020)

    Added

    #1071 確認ダイアログの多言語化対応 #1126 作成したAITをtestbedにdeployするツールが必要

    Fixed

    #1099 ブラウザバック、リロードでエラーが発生する画面がある #1123 内部品質名称を英語に変更する #1115 2つ以上あるmeasureのうち、一つだけチェックをいれてTDを作成するとエラーが発生する #1125 READMEの記述を修正(qai-testbed → qunomon) #1163 dag配下のフォルダを削除する #1156 docker-airflowのDockerfileの修正 #1157 Github security alert への対応

    Source code(tar.gz)
    Source code(zip)
A plug-and-play library for neural networks written in Python

A plug-and-play library for neural networks written in Python!

Dimos Michailidis 2 Jul 16, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Robotic Process Automation in Windows and Linux by using Driagrams.net BPMN diagrams.

BPMN_RPA Robotic Process Automation in Windows and Linux by using BPMN diagrams. With this Framework you can draw Business Process Model Notation base

23 Dec 14, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Experiments and code to generate the GINC small-scale in-context learning dataset from "An Explanation for In-context Learning as Implicit Bayesian Inference"

GINC small-scale in-context learning dataset GINC (Generative In-Context learning Dataset) is a small-scale synthetic dataset for studying in-context

P-Lambda 29 Dec 19, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
my graduation project is about live human face augmentation by projection mapping by using CNN

Live-human-face-expression-augmentation-by-projection my graduation project is about live human face augmentation by projection mapping by using CNN o

1 Mar 08, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
A Distributional Approach To Controlled Text Generation

A Distributional Approach To Controlled Text Generation This is the repository code for the ICLR 2021 paper "A Distributional Approach to Controlled T

NAVER 102 Jan 07, 2023
Dynamic Slimmable Network (CVPR 2021, Oral)

Dynamic Slimmable Network (DS-Net) This repository contains PyTorch code of our paper: Dynamic Slimmable Network (CVPR 2021 Oral). Architecture of DS-

Changlin Li 197 Dec 09, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023