The VeriNet toolkit for verification of neural networks

Related tags

Deep LearningVeriNet
Overview

VeriNet

The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks. VeriNet won second place overall and was the most performing among toolkits not using GPUs in the 2nd international verification of neural networks competition. VeriNet is devloped at the Verification of Autonomous Systems (VAS) group, Imperial College London.

Relevant Publications.

VeriNet is developed as part of the following publications:

Efficient Neural Network Verification via Adaptive Refinement and Adversarial Search

DEEPSPLIT: An Efficient Splitting Method for Neural Network Verification via Indirect Effect Analysis

This version of VeriNet subsumes the VeriNet toolkit publised in the first paper and the DeepSplit toolkit published in the second paper.

Installation:

All dependencies can be installed via Pipenv.

VeriNet depends on the Xpress solver, which can solve smaller problems without a license; however, larger problems (networks with more than approximately 5000 nodes) require a license. Free academic licenses can be obtained at: https://content.fico.com/l/517101/2018-06-10/3fpbf

We recommend installing the developer dependencies for some extra optimisations during the loading of onnx models. These can be installed by running pipenv with the --dev option: $pipenv install --dev.

Usage:

Models:

VeriNet supports loading models in onnx format or custom models created with the VeriNetNN class, a subclass of torch.nn.module.

Loading onnx models:

Onnx models can be loaded as follows:

from verinet.parsers.onnx_parser import ONNXParser

onnx_parser = ONNXParser(onnx_model_path, input_names=("x",), transpose_fc_weights=False, use_64bit=False)
model = onnx_parser.to_pytorch()
model.eval()

The first argument is the path of the onnx file; input_names should be a tuple containing the input-variable name as stored in the onnx model; if transpose_fc_weights is true the weight matrices of fully-connected layers are transposed; if use_64bit is true the parameters of the model are stored as torch.DoubleTensors instead of torch.FloatTensors.

Custom models:

The following is a simple example of a VeriNetNN model with two inputs, one FC layer, one ReLU layer and 2 outputs:

import torch.nn as nn
from verinet.neural_networks.verinet_nn import VeriNetNN, VeriNetNNNode

nodes = [VeriNetNNNode(idx=0, op=nn.Identity(), connections_from=None, connections_to=[1]),
         VeriNetNNNode(idx=1, op=nn.nn.Linear(2, 2)(), connections_from=[0], connections_to=[2]),
         VeriNetNNNode(idx=2, op=nn.ReLU(), connections_from=[1], connections_to=[3]),
         VeriNetNNNode(idx=3, op=nn.Identity(), connections_from=[2], connections_to=None)]

model = VeriNetNN(nodes)

VeriNetNN takes as input a list of nodes (note that 'nodes' here do not correspond to neurons, each node may have multiple neurons) where each node has the following parameters:

  • idx: A unique node-index sorted topologically wrt the connections.
  • op: The operation performed by the node, all operations defined in verinet/neural_networks/custom_layers.py as well as nn.ReLU, nn.Sigmoid, nn.Tanh, nn.Linear, nn.Conv2d, nn.AvgPool2d, nn.Identity, nn.Reshape, nn.Transpose and nn.Flatten are supported.
  • connections_from: A list of which nodes' outputs are used as input in this node. Note that more than one output in a single node (residual connections) is only support for nodes with the AddDynamic op as defined in custom_layers.py.
  • connections_to: A list of which nodes' input depend on this node's output corresponding to connections_from.

The first and last layer should be nn.Identity nodes. BatchNorm2d and MaxPool2d operations can be implemented by saving the model to onnx and reloading as the onnx parser automatically attempts to convert these to equivalent Conv2d and ReLU layers.

Verification Objectives:

VeriNet supports verification objectives in the VNN-COMP'21 vnnlib format and custom objectives.

Vnnlib:

VeriNet supports vnnlib files formated as described in the following discussion: https://github.com/stanleybak/vnncomp2021/issues/2. The files can be loaded as follows:

from verinet.parsers.vnnlib_parser import VNNLIBParser

vnnlib_parser = VNNLIBParser(vnnlib_path)
objectives = vnnlib_parser.get_objectives_from_vnnlib(model, input_shape)

The vnnlib_path parameter should be the path of the vnnlib file, model is the VeriNetNN model as discussed above while the input shape is a tuple describing the shape of the models input without batch-dimension (e.g. (784, ) for flattened MNIST (1, 28, 28) for MNIST images and (3, 32, 32) for CIFAR-10 Images).

Custom objectives:

The following is an example of how a custom verification objective for classification problems can be encoded (correct output larger than all other outputs):

from verinet.verification.objective import Objective

objective = Objective(input_bounds, output_size=10, model=model)
out_vars = objective.output_vars
for j in range(objective.output_size):
    if j != correct_output:
        # noinspection PyTypeChecker
        objective.add_constraints(out_vars[j] <= out_vars[correct_output])

Here input bounds is an array of shape (*network_input_shape, 2) where network_input_shape is the input shape of the network (withut batch dimension) and the last dimension contains the lower bounds at position 0 and upper bounds at position 1.

Note that the verification objective encodes what it means for the network to be Safe/Robust. And-type constraints can be encoded by calling objective.add_constraints for each and-clause, while or-type constraints can be encoded with '|' (e.g. (out_vars[0] < 1) | (out_vars[0] < out_vars[1])).

Verification:

After defining the model and objective as described above, verification is performed by using the VeriNet class as follows:

from verinet.verification.verinet import VeriNet

solver = VeriNet(use_gpu=True, max_procs=None)
status = solver.verify(objective=objective, timeout=3600)

The parameters of VeriNet, use_gpu and max_procs, determines whether to use the GPU and the maximum number of processes (max_procs = None automatically determines the number of processes depending on the cores available).

The parameters in solver.verify correspond to the objective as discussed above and the timeout in seconds. Note that is recommended to keep solver alive instead of creating a new object every call to reduce overhead.

After each verification run the number of branches explored and maximum depth reached are stored in solver.branches_explored and solver.max_depth, respectively. If the objective is determined to be unsafe/not-robust, a counter example is stored in solver.counter_example.

At the end of each run, status will be either Status.Safe, Status.Unsafe, Status.Undecided or Status.Underflow. Safe means that the property is robust, Unsafe that a counter example was found, undecided that the solver timed-out and underflow that an error was encountered, most likely due to floating point precision.

Advanced usage:

Environment variables:

The .env file contains some environment variables that are automatically enabled if pipenv is used, if pipenv is not used make sure to export these variables.

Config file:

The config file in verinet/util/config.py contains several advanced settings. Of particular interest are the following:

  • PRECISION: (32 or 64) The floating point precision used in SIP. Note that this does not affect the precision of the model itself, which can be adjusted in the ONNXParser as discussed above.
  • MAX_ESTIMATED_MEM_USAGE: The maximum estimated memory usage acceptable in SIP. Can be reduced to reduce the memory requirements at the cost of computational performance.
  • USE_SSIP and STORE_SSIP_BOUNDS: Performs a pre-processing using a lower cost SIP-variant. Should be enabled if the input-dimensionality is significantly smaller than the size of the network (e.g. less than 50 input nodes with more than 10k Relu nodes).

Authors:

Patrick Henriksen: [email protected]
Alessio Lomuscio.

Owner
Verification of Autonomous Systems Research Group; Department of Computing; Imperial College London; London UK
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
Unsupervised captioning - Code for Unsupervised Image Captioning

Unsupervised Image Captioning by Yang Feng, Lin Ma, Wei Liu, and Jiebo Luo Introduction Most image captioning models are trained using paired image-se

Yang Feng 207 Dec 24, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
yufan 81 Dec 08, 2022
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
HarDNeXt: Official HarDNeXt repository

HarDNeXt-Pytorch HarDNeXt: A Stage Receptive Field and Connectivity Aware Convolution Neural Network HarDNeXt-MSEG for Medical Image Segmentation in 0

5 May 26, 2022
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Контрольная работа по математическим методам машинного обучения

ML-MathMethods-Test Контрольная работа по математическим методам машинного обучения. Вычисление основных статистик, диаграмм и графиков, проверка разл

Stas Ivanovskii 1 Jan 06, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Tensorflow/Keras Plug-N-Play Deep Learning Models Compilation

DeepBay This project was created with the objective of compile Machine Learning Architectures created using Tensorflow or Keras. The architectures mus

Whitman Bohorquez 4 Sep 26, 2022
Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning

isvd Official implementation of NeurIPS'21: Implicit SVD for Graph Representation Learning If you find this code useful, you may cite us as: @inprocee

Sami Abu-El-Haija 16 Jan 08, 2023
Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"

Photo-Realistic-Super-Resoluton Torch Implementation of "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network" [Paper]

Harry Yang 199 Dec 01, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation Ported from https://github.com/hzwer/arXiv2020-RIFE Dependencies NumPy

49 Jan 07, 2023
Python library for loading and using triangular meshes.

Trimesh is a pure Python (2.7-3.4+) library for loading and using triangular meshes with an emphasis on watertight surfaces. The goal of the library i

Michael Dawson-Haggerty 2.2k Jan 07, 2023
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
This repository is related to an Arabic tutorial, within the tutorial we discuss the common data structure and algorithms and their worst and best case for each, then implement the code using Python.

Data Structure and Algorithms with Python This repository is related to the Arabic tutorial here, within the tutorial we discuss the common data struc

Mohamed Ayman 33 Dec 02, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021