A library for optimization on Riemannian manifolds

Overview

TensorFlow RiemOpt

PyPI arXiv Build Status Coverage Status Code style: black License

A library for manifold-constrained optimization in TensorFlow.

Installation

To install the latest development version from GitHub:

pip install git+https://github.com/master/tensorflow-riemopt.git

To install a package from PyPI:

pip install tensorflow-riemopt

Features

The core package implements concepts in differential geometry, such as manifolds and Riemannian metrics with associated exponential and logarithmic maps, geodesics, retractions, and transports. For manifolds, where closed-form expressions are not available, the library provides numerical approximations.

import tensorflow_riemopt as riemopt

S = riemopt.manifolds.Sphere()

x = S.projx(tf.constant([0.1, -0.1, 0.1]))
u = S.proju(x, tf.constant([1., 1., 1.]))
v = S.proju(x, tf.constant([-0.7, -1.4, 1.4]))

y = S.exp(x, v)

u_ = S.transp(x, y, u)
v_ = S.transp(x, y, v)

Manifolds

  • manifolds.Cholesky - manifold of lower triangular matrices with positive diagonal elements
  • manifolds.Euclidian - unconstrained manifold with the Euclidean metric
  • manifolds.Grassmannian - manifold of p-dimensional linear subspaces of the n-dimensional space
  • manifolds.Hyperboloid - manifold of n-dimensional hyperbolic space embedded in the n+1-dimensional Minkowski space
  • manifolds.Poincare - the Poincaré ball model of the hyperbolic space
  • manifolds.Product - Cartesian product of manifolds
  • manifolds.SPDAffineInvariant - manifold of symmetric positive definite (SPD) matrices endowed with the affine-invariant metric
  • manifolds.SPDLogCholesky - SPD manifold with the Log-Cholesky metric
  • manifolds.SPDLogEuclidean - SPD manifold with the Log-Euclidean metric
  • manifolds.SpecialOrthogonal - manifold of rotation matrices
  • manifolds.Sphere - manifold of unit-normalized points
  • manifolds.StiefelEuclidean - manifold of orthonormal p-frames in the n-dimensional space endowed with the Euclidean metric
  • manifolds.StiefelCanonical - Stiefel manifold with the canonical metric
  • manifolds.StiefelCayley - Stiefel manifold the retraction map via an iterative Cayley transform

Optimizers

Constrained optimization algorithms work as drop-in replacements for Keras optimizers for sparse and dense updates in both Eager and Graph modes.

  • optimizers.RiemannianSGD - Riemannian Gradient Descent
  • optimizers.RiemannianAdam - Riemannian Adam and AMSGrad
  • optimizers.ConstrainedRMSProp - Constrained RMSProp

Layers

  • layers.ManifoldEmbedding - constrained keras.layers.Embedding layer

Examples

  • SPDNet - Huang, Zhiwu, and Luc Van Gool. "A Riemannian network for SPD matrix learning." Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. AAAI Press, 2017.
  • LieNet - Huang, Zhiwu, et al. "Deep learning on Lie groups for skeleton-based action recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
  • GrNet - Huang, Zhiwu, Jiqing Wu, and Luc Van Gool. "Building Deep Networks on Grassmann Manifolds." AAAI. AAAI Press, 2018.
  • Hyperbolic Neural Network - Ganea, Octavian, Gary Bécigneul, and Thomas Hofmann. "Hyperbolic neural networks." Advances in neural information processing systems. 2018.
  • Poincaré GloVe - Tifrea, Alexandru, Gary Becigneul, and Octavian-Eugen Ganea. "Poincaré Glove: Hyperbolic Word Embeddings." International Conference on Learning Representations. 2018.

References

If you find TensorFlow RiemOpt useful in your research, please cite:

@misc{smirnov2021tensorflow,
      title={TensorFlow RiemOpt: a library for optimization on Riemannian manifolds},
      author={Oleg Smirnov},
      year={2021},
      eprint={2105.13921},
      archivePrefix={arXiv},
      primaryClass={cs.MS}
}

Acknowledgment

TensorFlow RiemOpt was inspired by many similar projects:

  • Manopt, a matlab toolbox for optimization on manifolds
  • Pymanopt, a Python toolbox for optimization on manifolds
  • Geoopt: Riemannian Optimization in PyTorch
  • Geomstats, an open-source Python package for computations and statistics on nonlinear manifolds

License

The code is MIT-licensed.

You might also like...
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

Official code for paper "Optimization for Oriented Object Detection via Representation Invariance Loss".

Optimization for Oriented Object Detection via Representation Invariance Loss By Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Xue Yang, and Yunpeng Dong. Th

Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Bayesian optimization in PyTorch

BoTorch is a library for Bayesian Optimization built on PyTorch. BoTorch is currently in beta and under active development! Why BoTorch ? BoTorch Prov

optimization routines for hyperparameter tuning
optimization routines for hyperparameter tuning

Optunity is a library containing various optimizers for hyperparameter tuning. Hyperparameter tuning is a recurrent problem in many machine learning t

Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

A Python implementation of global optimization with gaussian processes.
A Python implementation of global optimization with gaussian processes.

Bayesian Optimization Pure Python implementation of bayesian global optimization with gaussian processes. PyPI (pip): $ pip install bayesian-optimizat

Safe Bayesian Optimization
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Comments
  • Projection on SPDs is not projecting onto SPDs

    Projection on SPDs is not projecting onto SPDs

    Hi, nice to see another package doing optimizationon manifolds! I have not yet had the time to check this versus what pymanopt is doing (I think they use tensor flow as a backend, too?) But I just noticed that

    https://github.com/master/tensorflow-manopt/blob/93402f6770d5b3c45f232340fddfa92a7126f19a/tensorflow_manopt/manifolds/symmetric_positive.py#L37-L41

    This might be wrong. For SPDs, the characteristic property is, that all eigenvalues are positive, so this projection is not projection onto the manifold (of SPDs) but onto the set of positive semidefinite matrices. There is no projection onto the SPDs since that set is open in the set of (symmetric) matrices.

    opened by kellertuer 2
  • GrNet produces NaN entries in input tensor

    GrNet produces NaN entries in input tensor

    Hi! First of all, really appreciate you guys taking the time to build a much required riemmannian geometry based package in tensorflow. It is proving to be quite useful for me. However, I recently ran the [GrNet code] (https://github.com/master/tensorflow-riemopt/tree/master/examples/grnet) with the AFEW dataset(the default dataset used in the code) on my machine and it seems at some point the input tensors get filled with NaN values. I tried tinkering with the learning rate and a few other usual things that could determine the cause of such NaN value in a dl model but it seems to be of no use. Any idea as to why this might be the case- is the code still been checked for bugs or am I missing something? Thanks in advance!

    opened by SouvikBan 2
Releases(v0.1.1)
Owner
Oleg Smirnov
Oleg Smirnov
Transformer Tracking (CVPR2021)

TransT - Transformer Tracking [CVPR2021] Official implementation of the TransT (CVPR2021) , including training code and trained models. We are revisin

chenxin 465 Jan 06, 2023
masscan + nmap + Finger

说明 个人根据使用习惯修改masnmap而来的一个小工具。调用masscan做全端口扫描,再调用nmap做服务识别,最后调用Finger做Web指纹识别。工具使用场景适合风险探测排查、众测等。 使用方法 安装依赖 pip3 install -r requirements.txt -i https:/

Ryan 3 Mar 25, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Exploring Classification Equilibrium in Long-Tailed Object Detection, ICCV2021

Exploring Classification Equilibrium in Long-Tailed Object Detection (LOCE, ICCV 2021) Paper Introduction The conventional detectors tend to make imba

52 Nov 21, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
Object Detection and Multi-Object Tracking

Object Detection and Multi-Object Tracking

Bobby Chen 1.6k Jan 04, 2023
Practical and Real-world applications of ML based on the homework of Hung-yi Lee Machine Learning Course 2021

Machine Learning Theory and Application Overview This repository is inspired by the Hung-yi Lee Machine Learning Course 2021. In that course, professo

SilenceJiang 35 Nov 22, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022
Learning to See by Looking at Noise

Learning to See by Looking at Noise This is the official implementation of Learning to See by Looking at Noise. In this work, we investigate a suite o

Manel Baradad Jurjo 82 Dec 24, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
PINN Burgers - 1D Burgers equation simulated by PINN

PINN(s): Physics-Informed Neural Network(s) for Burgers equation This is an impl

ShotaDEGUCHI 1 Feb 12, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
InterfaceGAN++: Exploring the limits of InterfaceGAN

InterfaceGAN++: Exploring the limits of InterfaceGAN Authors: Apavou Clément & Belkada Younes From left to right - Images generated using styleGAN and

Younes Belkada 42 Dec 23, 2022