NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Overview

NLG evaluation via Statistical Measures of Similarity: BaryScore, DepthScore, InfoLM

Automatic Evaluation Metric described in the papers BaryScore (EMNLP 2021) , DepthScore (Submitted), InfoLM (AAAI 2022).

Authors:

Goal :

This repository deals with automatic evaluation of NLG and addresses the special case of reference based evaluation. The goal is to build a metric m: where is the space of sentences. An example is given below:

Metric examples: similar sentences should have a high score, dissimilar should have a low score according to m.

Overview

We start by giving an overview of the proposed metrics.

DepthScore (Submitted)

DepthScore is a single layer metric based on pretrained contextualized representations. Similar to BertScore, it embeds both the candidate (C: It is freezing this morning) and the reference (R: The weather is cold today) using a single layer of Bert to obtain discrete probability measures and . Then, a similarity score is computed using the pseudo metric introduced here.

Depth Score

This statistical measure has been tested on Data2text and Summarization.

BaryScore (EMNLP 2021)

BaryScore is a multi-layers metric based on pretrained contextualized representations. Similar to MoverScore, it aggregates the layers of Bert before computing a similarity score. By modelling the layer output of deep contextualized embeddings as a probability distribution rather than by a vector embedding; BaryScore aggregates the different outputs through the Wasserstein space topology. MoverScore (right) leverages the information available in other layers by aggregating the layers using a power mean and then use a Wasserstein distance ().

BaryScore (left) vs MoverScore (right)

This statistical measure has been tested on Data2text, Summarization, Image captioning and NMT.

InfoLM (AAAI 2022)

InfoLM is a metric based on a pretrained language model ( PLM) (). Given an input sentence S mask at position i (), the PLM outputs a discret probability distribution () over the vocabulary (). The second key ingredient of InfoLM is a measure of information () that computes a measure of similarity between the aggregated distributions. Formally, InfoLM involes 3 steps:

  • 1. Compute individual distributions using for the candidate C and the reference R.
  • 2. Aggregate individual distributions using a weighted sum.
  • 3. Compute similarity using .
InfoLM

InfoLM is flexible as it can adapte to different criteria using different measures of information. This metric has been tested on Data2text and Summarization.

References

If you find this repo useful, please cite our papers:

@article{infolm_aaai2022,
  title={InfoLM: A New Metric to Evaluate Summarization \& Data2Text Generation},
  author={Colombo, Pierre and Clavel, Chloe and Piantanida, Pablo},
  journal={arXiv preprint arXiv:2112.01589},
  year={2021}
}
@inproceedings{colombo-etal-2021-automatic,
    title = "Automatic Text Evaluation through the Lens of {W}asserstein Barycenters",
    author = "Colombo, Pierre  and Staerman, Guillaume  and Clavel, Chlo{\'e}  and Piantanida, Pablo",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    year = "2021",
    pages = "10450--10466"
}
@article{depth_score,
  title={A pseudo-metric between probability distributions based on depth-trimmed regions},
  author={Staerman, Guillaume and Mozharovskyi, Pavlo and Colombo, Pierre and Cl{\'e}men{\c{c}}on, St{\'e}phan and d'Alch{\'e}-Buc, Florence},
  journal={arXiv preprint arXiv:2103.12711},
  year={2021}
}

Usage

Python Function

Running our metrics can be computationally intensive (because it relies on pretrained models). Therefore, a GPU is usually necessary. If you don't have access to a GPU, you can use light pretrained representations such as TinyBERT, DistilBERT.

We provide example inputs under <metric_name>.py. For example for BaryScore

metric_call = BaryScoreMetric()

ref = [
        'I like my cakes very much',
        'I hate these cakes!']
hypothesis = ['I like my cakes very much',
                  'I like my cakes very much']

metric_call.prepare_idfs(ref, hypothesis)
final_preds = metric_call.evaluate_batch(ref, hypothesis)
print(final_preds)

Command Line Interface (CLI)

We provide a command line interface (CLI) of BERTScore as well as a python module. For the CLI, you can use it as follows:

export metric=infolm
export measure_to_use=fisher_rao
CUDA_VISIBLE_DEVICES=0 python score_cli.py --ref="samples/refs.txt" --cand="samples/hyps.txt" --metric_name=${metric} --measure_to_use=${measure_to_use}

See more options by python score_cli.py -h.

Practical Tips

  • Unlike BERT, RoBERTa uses GPT2-style tokenizer which creates addition " " tokens when there are multiple spaces appearing together. It is recommended to remove addition spaces by sent = re.sub(r' +', ' ', sent) or sent = re.sub(r'\s+', ' ', sent).
  • Using inverse document frequency (idf) on the reference sentences to weigh word importance may correlate better with human judgment. However, when the set of reference sentences become too small, the idf score would become inaccurate/invalid. To use idf, please set --idf when using the CLI tool.
  • When you are low on GPU memory, consider setting batch_size to a low number.

Practical Limitation

  • Because pretrained representations have learned positional embeddings with max length 512, our scores are undefined between sentences longer than 510 (512 after adding [CLS] and [SEP] tokens) . The sentences longer than this will be truncated. Please consider using larger models which can support much longer inputs.

Acknowledgements

Our research was granted access to the HPC resources of IDRIS under the allocation 2021-AP010611665 as well as under the project 2021-101838 made by GENCI.

Owner
Pierre Colombo
Pierre Colombo
OMNIVORE is a single vision model for many different visual modalities

Omnivore: A Single Model for Many Visual Modalities [paper][website] OMNIVORE is a single vision model for many different visual modalities. It learns

Meta Research 451 Dec 27, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs Β» Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
(NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductive few-shot classification"

SSR (NeurIPS 2021) Pytorch implementation of paper "Re-ranking for image retrieval and transductivefew-shot classification" [Paper] [Project webpage]

xshen 29 Dec 06, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting (RVM) English | δΈ­ζ–‡ Official repository for the paper Robust High-Resolution Video Matting with Temporal Guidance. RVM is specific

flow-dev 2 Aug 21, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP πŸ“Ž A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
Fast and robust certifiable relative pose estimation

Fast and Robust Relative Pose Estimation for Calibrated Cameras This repository contains the code for the relative pose estimation between two central

42 Dec 06, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
Jax/Flax implementation of Variational-DiffWave.

jax-variational-diffwave Jax/Flax implementation of Variational-DiffWave. (Zhifeng Kong et al., 2020, Diederik P. Kingma et al., 2021.) DiffWave with

YoungJoong Kim 37 Dec 16, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Unsupervised Attributed Multiplex Network Embedding (AAAI 2020)

Unsupervised Attributed Multiplex Network Embedding (DMGI) Overview Nodes in a multiplex network are connected by multiple types of relations. However

Chanyoung Park 114 Dec 06, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Computer Vision Paper Reviews with Key Summary of paper, End to End Code Practice and Jupyter Notebook converted papers

Computer-Vision-Paper-Reviews Computer Vision Paper Reviews with Key Summary along Papers & Codes. Jonathan Choi 2021 The repository provides 100+ Pap

Jonathan Choi 2 Mar 17, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022