[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

Related tags

Deep Learninguota
Overview

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration

This repository is the official PyTorch implementation of UOTA (Unsupervised OuTlier Arbitration).

0 Requirements

  • Python 3.6
  • PyTorch install = 1.6.0
  • torchvision install = 0.7.0
  • CUDA 10.1
  • Apex with CUDA extension
  • Other dependencies: opencv-python, scipy, pandas, numpy

1 Pretraining

We release a demo to pretrain ResNet50 on ImageNet1K with SwAV+UOTA pretrained models.

1.1 SwAV+UOTA pretrain

To train SwAV+UOTA on a single node with 4 gpus for 200 epochs, run:

DATASET_PATH="path/to/ImageNet1K/train"
EXPERIMENT_PATH="path/to/experiment"

python -m torch.distributed.launch --nproc_per_node=4 main_uota.py \
--data_path ${DATASET_PATH} \
--nmb_crops 2 6 \
--size_crops 224 96 \
--min_scale_crops 0.14 0.05 \
--max_scale_crops 1. 0.14 \
--crops_for_assign 0 1 \
--use_pil_blur true \
--epochs 200 \
--warmup_epochs 0 \
--batch_size 64 \
--base_lr 0.6 \
--final_lr 0.0006 \
--uota_tau 350. \
--epoch_uota_starts 100 \
--wd 0.000001 \
--use_fp16 true \
--dist_url "tcp://localhost:40000" \
--arch uota_r50 \
--sync_bn pytorch \
--dump_path ${EXPERIMENT_PATH}

2 Linear Evaluation

To train a linear classifier on frozen features out of deep network pretrained via various self-supervised pretraining methods, run:

DATASET_PATH="path/to/ImageNet1K"
EXPERIMENT_PATH="path/to/experiment"
LINCLS_PATH="path/to/lincls"

python -m torch.distributed.launch --nproc_per_node=4 eval_linear.py \
--data_path ${DATASET_PATH} \
--arch resnet50 \
--lr 1.2 \
--dump_path ${LINCLS_PATH} \
--pretrained ${EXPERIMENT_PATH}/swav_uota_r50_e200_pretrained.pth \
--batch_size 64 \
--num_classes 100 \

3 Results

To compare with SwAV fairly, we provide a SwAV+UOTA model with ResNet-50 architecture pretrained on ImageNet1K for 200 epochs, and release the pretrained model and the linear classier.

method epochs batch-size multi-crop ImageNet1K top-1 acc. pretrained model linear classifier
SwAV 200 256 2x224 + 6x96 72.7 / /
SwAV + UOTA 200 256 2x224 + 6x96 73.5 pretrained linear

4 Citation

@InProceedings{wang2021NeurIPS,
  title={Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration},
  author={Wang, Yu and Lin, Jingyang and Zou, Jingjing and Pan, Yingwei and Yao, Ting and Mei, Tao},
  booktitle={NeurIPS},
  year={2021},
}
You might also like...
PyTorch implementation of spectral graph ConvNets, NIPS’16
PyTorch implementation of spectral graph ConvNets, NIPS’16

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

pytorch implementation of
pytorch implementation of "Contrastive Multiview Coding", "Momentum Contrast for Unsupervised Visual Representation Learning", and "Unsupervised Feature Learning via Non-Parametric Instance-level Discrimination"

Unofficial implementation: MoCo: Momentum Contrast for Unsupervised Visual Representation Learning (Paper) InsDis: Unsupervised Feature Learning via N

The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Streaming Anomaly Detection Framework in Python (Outlier Detection for Streaming Data)

Python Streaming Anomaly Detection (PySAD) PySAD is an open-source python framework for anomaly detection on streaming multivariate data. Documentatio

A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Outlier Exposure with Confidence Control for Out-of-Distribution Detection
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Releases(v1.0.0)
Code for Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021)

Estimating Multi-cause Treatment Effects via Single-cause Perturbation (NeurIPS 2021) Single-cause Perturbation (SCP) is a framework to estimate the m

Zhaozhi Qian 9 Sep 28, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
DLFlow is a deep learning framework.

DLFlow是一套深度学习pipeline,它结合了Spark的大规模特征处理能力和Tensorflow模型构建能力。利用DLFlow可以快速处理原始特征、训练模型并进行大规模分布式预测,十分适合离线环境下的生产任务。利用DLFlow,用户只需专注于模型开发,而无需关心原始特征处理、pipeline构建、生产部署等工作。

DiDi 152 Oct 27, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
CKD - Collaborative Knowledge Distillation for Heterogeneous Information Network Embedding

Collaborative Knowledge Distillation for Heterogeneous Information Network Embed

zhousheng 9 Dec 05, 2022
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
Table-Extractor 表格抽取

(t)able-(ex)tractor 本项目旨在实现pdf表格抽取。 Models 版面分析模块(Yolo) 表格结构抽取(ResNet + Transformer) 文字识别模块(CRNN + CTC Loss) Acknowledgements TableMaster attention-i

2 Jan 15, 2022
Using modified BiSeNet for face parsing in PyTorch

face-parsing.PyTorch Contents Training Demo References Training Prepare training data: -- download CelebAMask-HQ dataset -- change file path in the pr

zll 1.6k Jan 08, 2023
BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search

BossNAS This repository contains PyTorch evaluation code, retraining code and pretrained models of our paper: BossNAS: Exploring Hybrid CNN-transforme

Changlin Li 127 Dec 26, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
Free like Freedom

This is all very much a work in progress! More to come! ( We're working on it though! Stay tuned!) Installation Open an Anaconda Prompt (in Windows, o

2.3k Jan 04, 2023
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022