Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness

Overview

FL Analysis

This repository contains the code and results for the paper "Towards Understanding Quality Challenges of the Federated Learning: A First Look from the Lens of Robustness" submitted to EMSE journal.

Replication

Main experiment

All experiments are done using python 3.8 and TensorFlow 2.4

Steps to run the experiments are as follows:

  1. The options for each configuration are set in JSON file which should be in the root directory by default. However, this can be changed using the environment variable CONFIG_PATH.

  2. The paths for the output and the processed ADNI dataset is set using the environment variables RESULTS_ROOT and ADNI_ROOT respectively. If these variables are not set the mentioned paths will use "./results" and "./adni" as default.

  3. Run the main program by python test.py

  • Note that the results will be overwritten if same config is run for multiple time. To avoid that RESULTS_ROOT can be changed at each run.

Config details

The config file can have the following options:

    "dataset": one of the following 
      "adni"
      "mnist"
      "cifar"
    "aggregator": one of the following 
      "fed-avg"
      "median"
      "trimmed-mean"
      "krum"
      "combine"
    "attack": one of the following
      "label-flip"
      "noise-data"
      "overlap-data"
      "delete-data"
      "unbalance-data"
      "random-update"
      "sign-flip"
      "backdoor"
    "attack-fraction": a float between 0 and 1
    "non-iid-deg": a float between 0 and 1
    "num-rounds": an integer value

Notes:

  1. attack field is optional. If it is not present, no attack will be applied and attack-fraction is not necessary.
  2. If dataset is set to adni, non-iid-deg field is not necessary
  3. The aggregator field is optional and if it is not present it will use the default fed-avg.
  4. All configurations used in our experiments are available in configs folder

ADNI dataset

ADNI dataset is not included in the repository due to user agreements, but information about it is available in www.adni-info.org.

Once the dataset is available, data can be processed with extract_central_axial_slices_adni.ipynb

Results Visualization

Results can be visualized using the visualizer.ipynb.

  • The root folder of the results should be set in the notebook before running.
  • Visualizations will be saved in the root folder under 0images folder.
  • The visualizer expects the root sub folders to be the results of the different runs.

An example:


_root
├── _run1
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
├── _run2
│   ├── cifar-0--fedavg--clean
│   └── cifar-0--krum--clean
└── _run3
    ├── cifar-0--fedavg--clean
    └── cifar-0--krum--clean


Results

All results are available in the results folder (ADNI, CIFAR, Fashion MNIST, Ensemble). Each sub folder that represents a dataset contains the details of runs, plus processed visualizations and raw csv files in a folder called 0images.

PyTorch reimplementation of the paper Involution: Inverting the Inherence of Convolution for Visual Recognition [CVPR 2021].

Involution: Inverting the Inherence of Convolution for Visual Recognition Unofficial PyTorch reimplementation of the paper Involution: Inverting the I

Christoph Reich 100 Dec 01, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmentation

Self-Supervised Anomaly Segmentation Intorduction This is a PyToch implementation of A Novel Self-supervised Learning Task Designed for Anomaly Segmen

WuFan 2 Jan 27, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Ratatoskr: Worcester Tech's conference scheduling system

Ratatoskr: Worcester Tech's conference scheduling system In Norse mythology, Ratatoskr is a squirrel who runs up and down the world tree Yggdrasil to

4 Dec 22, 2022
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
A python3 tool to take a 360 degree survey of the RF spectrum (hamlib + rotctld + RTL-SDR/HackRF)

RF Light House (rflh) A python script to use a rotor and a SDR device (RTL-SDR or HackRF One) to measure the RF level around and get a data set and be

Pavel Milanes (CO7WT) 11 Dec 13, 2022
LogAvgExp - Pytorch Implementation of LogAvgExp

LogAvgExp - Pytorch Implementation of LogAvgExp for Pytorch Install $ pip instal

Phil Wang 31 Oct 14, 2022
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022