Multiview 3D object detection on MultiviewC dataset through moft3d.

Overview

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv]

Multiview 3D object detection on MultiviewC dataset through VFA.

Introduction

We propose a novel method, VFA, for multiview 3D object detection and MultiviewC, a synthetic dataset, for multi-view detection in occlusion scenarios.

Content

MultiviewC dataset

The MultiviewC dataset mainly contributes to multiview cattle action recognition, 3D objection detection and tracking. We build a novel synthetic dataset MultiviewC through UE4 based on real cattle video dataset which is offered by CISRO.

The MultiviewC dataset is generated on a 37.5 meter by 37.5 meter square field. It contains 7 cameras monitoring cattle activities. The images in MultiviewC are of high resolution, 1280x720 and synthetic animals in our dataset are highly realistic.

alt text

Download MultiviewC

  • download dataset and copy the annotations, images and calibrations folder into this repo.

Build your own version

Please refer to this repo for MultiviewC dataset toolkits.

VFA

This repo is contributed to the code for VFA.

Data Preparation

In this project, we use MultiviewC, MultiviewX and Wildtrack. Download and unzip the dataset in the ~/Data folder. Your ~/Data/ folder should look like this

Data
├── MultiviewC/
│   └── ...
|
├── MultiviewX/
│   └── ...
|
└── Wildtrack/ 
    └── ...

Training and Inference

Training from scratch.

# For MultiviewC
python .\train.py --data MultiviewC

# For MultiviewX
python .\train.py --data MultiviewX

# For Wildtrack
python .\train.py --data Wildtrack

We provide the training documents contains the checkpoints of model, optimizer and scheduler and tensorboard containing the training details. Download the latest training documents to ~/experiments folder from BaiduDrivepwd:6666 or GoogleDrive and unzip them. Your ~/experiments/ folder should look like this

experiments
└── MultiviewC/
    ├── checkpoints
    |   └── ...
    └── evaluation
    |   └── ...
    └── tensorboard
        └── ...

Evaluation

There are two metrics to evaluate the performance of model. MODA, MODP, Precission and Recall are used to evaluate detection performance such as the detection in occlusion scenes. These metrics need to successfully run in matlab environment. Please refer to here for more details. Even though, the python implementation of these metrics mentioned above is also provided, it need to select the distance threshould to detemine to positive samples,which is not objective enough. Thus, it is recommended to select the official implementation of matlab.

When it comes to the AP, AOS, OS metrics, we need to install cuda environment and build the toolkit for 3D rotated IoUs calculation. Please refer to this repo for more details.

Owner
Jiahao Ma
MPhil of Australian National University
Jiahao Ma
Software that can generate photos from paintings, turn horses into zebras, perform style transfer, and more.

CycleGAN PyTorch | project page | paper Torch implementation for learning an image-to-image translation (i.e. pix2pix) without input-output pairs, for

Jun-Yan Zhu 11.5k Dec 30, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
A simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

This is a simple rest api that classifies pneumonia infection weather it is Normal, Pneumonia Virus or Pneumonia Bacteria from a chest-x-ray image.

crispengari 3 Jan 08, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
The official implementation of the IEEE S&P`22 paper "SoK: How Robust is Deep Neural Network Image Classification Watermarking".

Watermark-Robustness-Toolbox - Official PyTorch Implementation This repository contains the official PyTorch implementation of the following paper to

49 Dec 19, 2022
Official implementation of "Learning Proposals for Practical Energy-Based Regression", 2021.

ebms_proposals Official implementation (PyTorch) of the paper: Learning Proposals for Practical Energy-Based Regression, 2021 [arXiv] [project]. Fredr

Fredrik Gustafsson 10 Oct 22, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Multi-objective constrained optimization for energy applications via tree ensembles

Multi-objective constrained optimization for energy applications via tree ensembles

C⚙G - Imperial College London 1 Nov 19, 2021
A real-time approach for mapping all human pixels of 2D RGB images to a 3D surface-based model of the body

DensePose: Dense Human Pose Estimation In The Wild Rıza Alp Güler, Natalia Neverova, Iasonas Kokkinos [densepose.org] [arXiv] [BibTeX] Dense human pos

Meta Research 6.4k Jan 01, 2023
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
X-modaler is a versatile and high-performance codebase for cross-modal analytics.

X-modaler X-modaler is a versatile and high-performance codebase for cross-modal analytics. This codebase unifies comprehensive high-quality modules i

910 Dec 28, 2022
Behavioral "black-box" testing for recommender systems

RecList RecList Free software: MIT license Documentation: https://reclist.readthedocs.io. Overview RecList is an open source library providing behavio

Jacopo Tagliabue 375 Dec 30, 2022