[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

Overview

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

Official Pytorch implementation of Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding (AAAI 2022).

Paper is at https://arxiv.org/pdf/2109.04872.pdf.

Paper explanation in Zhihu (in Chinese) is at https://zhuanlan.zhihu.com/p/446203594.

Abstract

Temporal grounding aims to localize a video moment which is semantically aligned with a given natural language query. Existing methods typically apply a detection or regression pipeline on the fused representation with the research focus on designing complicated prediction heads or fusion strategies. Instead, from a perspective on temporal grounding as a metric-learning problem, we present a Mutual Matching Network (MMN), to directly model the similarity between language queries and video moments in a joint embedding space. This new metric-learning framework enables fully exploiting negative samples from two new aspects: constructing negative cross-modal pairs in a mutual matching scheme and mining negative pairs across different videos. These new negative samples could enhance the joint representation learning of two modalities via cross-modal mutual matching to maximize their mutual information. Experiments show that our MMN achieves highly competitive performance compared with the state-of-the-art methods on four video grounding benchmarks. Based on MMN, we present a winner solution for the HC-STVG challenge of the 3rd PIC workshop. This suggests that metric learning is still a promising method for temporal grounding via capturing the essential cross-modal correlation in a joint embedding space.

Updates

Dec, 2021 - We uploaded the code and trained weights for Charades-STA, ActivityNet-Captions and TACoS datasets.

Todo: The code for spatio-temporal video grounding (HC-STVG dataset) will be available soon.

Datasets

  • Download the video feature and the groundtruth provided by 2D-TAN.
  • Extract and put them in a dataset folder in the same directory as train_net.py. For configurations of feature/groundtruth's paths, please refer to ./mmn/config/paths_catalog.py. (ann_file is annotation, feat_file is the video feature)

Dependencies

Our code is developed on the third-party implementation of 2D-TAN, so we have similar dependencies with it, such as:

yacs h5py terminaltables tqdm pytorch transformers 

Quick Start

We provide scripts for simplifying training and inference. For training our model, we provide a script for each dataset (e.g., ./scripts/tacos_train.sh). For evaluating the performance, we provide ./scripts/eval.sh.

For example, for training model in TACoS dataset in tacos_train.sh, we need to select the right config in config and decide the GPU by yourself in gpus (gpu id in your server) and gpun (total number of gpus).

# find all configs in configs/
config=pool_tacos_128x128_k5l8
# set your gpu id
gpus=0,1
# number of gpus
gpun=2
# please modify it with different value (e.g., 127.0.0.2, 29502) when you run multi mmn task on the same machine
master_addr=127.0.0.3
master_port=29511

Similarly, to evaluate the model, just change the information in eval.sh. Our trained weights for three datasets are in the Google Drive.

Citation

If you find our code useful, please generously cite our paper. (AAAI version bibtex will be updated later)

@article{DBLP:journals/corr/abs-2109-04872,
  author    = {Zhenzhi Wang and
               Limin Wang and
               Tao Wu and
               Tianhao Li and
               Gangshan Wu},
  title     = {Negative Sample Matters: {A} Renaissance of Metric Learning for Temporal
               Grounding},
  journal   = {CoRR},
  volume    = {abs/2109.04872},
  year      = {2021}
}

Contact

For any question, please raise an issue (preferred) or contact

Zhenzhi Wang: [email protected]

Acknowledgement

We appreciate 2D-TAN for video feature and configurations, and the third-party implementation of 2D-TAN for its implementation with DistributedDataParallel. Disclaimer: the performance gain of this third-party implementation is due to a tiny mistake of adding val set into training, yet our reproduced result is similar to the reported result in 2D-TAN paper.

Owner
Multimedia Computing Group, Nanjing University
Multimedia Computing Group, Nanjing University
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
Implementations of paper Controlling Directions Orthogonal to a Classifier

Classifier Orthogonalization Implementations of paper Controlling Directions Orthogonal to a Classifier , ICLR 2022, Yilun Xu, Hao He, Tianxiao Shen,

Yilun Xu 33 Dec 01, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
Film review classification

Film review classification Решение задачи классификации отзывов на фильмы на положительные и отрицательные с помощью рекуррентных нейронных сетей 1. З

Nikita Dukin 3 Jan 21, 2022
Isaac Gym Reinforcement Learning Environments

Isaac Gym Reinforcement Learning Environments

NVIDIA Omniverse 714 Jan 08, 2023
Weakly Supervised Text-to-SQL Parsing through Question Decomposition

Weakly Supervised Text-to-SQL Parsing through Question Decomposition The official repository for the paper "Weakly Supervised Text-to-SQL Parsing thro

14 Dec 19, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
An onlinel learning to rank python codebase.

OLTR Online learning to rank python codebase. The code related to Pairwise Differentiable Gradient Descent (ranker/PDGDLinearRanker.py) is copied from

ielab 5 Jul 18, 2022
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
SOTA model in CIFAR10

A PyTorch Implementation of CIFAR Tricks 调研了CIFAR10数据集上各种trick,数据增强,正则化方法,并进行了实现。目前项目告一段落,如果有更好的想法,或者希望一起维护这个项目可以提issue或者在我的主页找到我的联系方式。 0. Requirement

PJDong 58 Dec 21, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022