A python library for highly configurable transformers - easing model architecture search and experimentation.

Overview

configaformers (re-factor in progress)

A python library for highly configurable transformers - easing model architecture search and experimentation. It is premised on building small and independent modules that enables users to configure custom transformer architectures.

Special thanks to lucidrains (https://github.com/lucidrains) and Kharr.

Usage

Quick demo that will configure a 768-wide, 12-layer transformer, with a language modeling head.

Import, and create token embedding block:

import torch
from model_builder import ConfigaFormer

emb = []
model_dim = 768

emb.append({'type': 'embedding',
            'output_dim': model_dim,
            'num_classes': 50257})

Create self-attention module:

attn = []

# Make residual and norm
attn.append({'type': 'make_stream', 'output_name': 'residual'})
attn.append({'type': 'norm', 'norm_type': 'layer_norm'})

# Make QKVs
attn.append({'type': 'linear', 'output_name': 'queries'})
attn.append({'type': 'linear', 'output_name': 'keys'})
attn.append({'type': 'linear', 'output_name': 'values'})

attn.append({'type': 'make_heads', 'input_name': 'queries', 'output_name': 'queries', 'num_heads': 12})
attn.append({'type': 'make_heads', 'input_name': 'keys', 'output_name': 'keys', 'num_heads': 12})

attn.append({'type': 'rope', 'input_name': 'queries', 'output_name': 'queries', 'rotate_dim': 16})
attn.append({'type': 'rope', 'input_name': 'keys', 'output_name': 'keys', 'rotate_dim': 16})

# Perform attention
attn.append({'type': 'mha_dots',
             'input_name_queries': 'queries',
             'input_name_keys': 'keys'})
attn.append({'type': 'attention_offset'})
attn.append({'type': 'mha_sum',
             'input_name_values': 'values'})

# Mix
attn.append({'type': 'linear'})

# Add residual
attn.append({'type': 'merge_streams',
             'input_name_1': 'residual',
             'merge_type': 'add'})

Create FFN module:

ffn = []

# Make residual and norm
ffn.append({'type': 'make_stream', 'output_name': 'residual'})
ffn.append({'type': 'norm', 'norm_type': 'layer_norm'})

# Proj Up
ffn.append({'type': 'linear', 'output_dim': 768*4})

# Activation
ffn.append({'type': 'activation'})

# Proj Down
ffn.append({'type': 'linear', 'output_dim': 768})

# Add residual
ffn.append({'type': 'merge_streams',
             'input_name_1': 'residual',
             'merge_type': 'add'})

Create language modeling head:

to_logits = []
to_logits.append({'type': 'linear', 'output_dim': 50257})

Create blocks, initialize input shapes, and init the model:

transformer_block = attn + ffn
classifier = ffn + to_logits

blocks = [{"config": emb,
           "repeat": 1},
          {"config": transformer_block,
           "repeat": 12},
          {"config": classifier,
           "repeat": 1},
          ]
          
my_config = {'blocks' = blocks}
input_streams = {'emb_ids': ['B', 'L_in'],
                 'attn_offset': ['B', 12, 'L_in', 'L_in'],}

model = ConfigaFormer(model_config=my_config,
                     input_streams=input_streams).cuda()

This will print out the transformer config:

Block #1, 1x
embedding -> Input(s): emb_ids (BSZ, L_in) - Output(s): x (BSZ, L_in, 768)


Block #2, 12x
make_stream -> Input(s): x (BSZ, L_in, 768) - Output(s): residual (BSZ, L_in, 768)
norm -> Input(s): x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 768)
linear -> Input(s): x (BSZ, L_in, 768) - Output(s): queries (BSZ, L_in, 768)
linear -> Input(s): x (BSZ, L_in, 768) - Output(s): keys (BSZ, L_in, 768)
linear -> Input(s): x (BSZ, L_in, 768) - Output(s): values (BSZ, L_in, 768)
make_heads -> Input(s): queries (BSZ, L_in, 768) - Output(s): queries (BSZ, 12, L_in, 64)
make_heads -> Input(s): keys (BSZ, L_in, 768) - Output(s): keys (BSZ, 12, L_in, 64)
rope -> Input(s): queries (BSZ, 12, L_in, 64), rope_16 (2048, 16) - Output(s): queries (BSZ, 12, L_in, 64)
rope -> Input(s): keys (BSZ, 12, L_in, 64), rope_16 (2048, 16) - Output(s): keys (BSZ, 12, L_in, 64)
mha_dots -> Input(s): queries (BSZ, 12, L_in, 64), keys (BSZ, 12, L_in, 64) - Output(s): attn_dots (BSZ, 12, L_in, L_in)
attention_offset -> Input(s): attn_dots (BSZ, 12, L_in, L_in), attn_offset (BSZ, 12, L_in, L_in) - Output(s): attn_dots (BSZ, 12, L_in, L_in)
mha_sum -> Input(s): values (BSZ, L_in, 768), attn_dots (BSZ, 12, L_in, L_in) - Output(s): x (BSZ, L_in, 768)
linear -> Input(s): x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 768)
merge_streams -> Input(s): residual (BSZ, L_in, 768), x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 768)
make_stream -> Input(s): x (BSZ, L_in, 768) - Output(s): residual (BSZ, L_in, 768)
norm -> Input(s): x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 768)
linear -> Input(s): x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 3072)
activation -> Input(s): x (BSZ, L_in, 3072) - Output(s): x (BSZ, L_in, 3072)
linear -> Input(s): x (BSZ, L_in, 3072) - Output(s): x (BSZ, L_in, 768)
merge_streams -> Input(s): residual (BSZ, L_in, 768), x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 768)


Block #3, 1x
make_stream -> Input(s): x (BSZ, L_in, 768) - Output(s): residual (BSZ, L_in, 768)
norm -> Input(s): x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 768)
linear -> Input(s): x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 3072)
activation -> Input(s): x (BSZ, L_in, 3072) - Output(s): x (BSZ, L_in, 3072)
linear -> Input(s): x (BSZ, L_in, 3072) - Output(s): x (BSZ, L_in, 768)
merge_streams -> Input(s): residual (BSZ, L_in, 768), x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 768)
linear -> Input(s): x (BSZ, L_in, 768) - Output(s): x (BSZ, L_in, 50257)

Before running, we need to get the attention offset (in this case, AliBi with a causal mask):

from attention_offset_module import get_alibi

attn_offset = get_alibi(num_heads=12)

Now we can use the model:

input_data = {'emb_ids': batch_ids.view(bsz, 1024).cuda(),
              'attn_offset': attn_offset.cuda()}

logits = model(input_data)['x'].view(bsz, 1024, 50257)

TODO

  1. Token shifting, down/up sampling
  2. Create higher abstractions for FFN and self-attention
  3. everything else
Owner
Anthony Fuller
Anthony Fuller
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
The code for Expectation-Maximization Attention Networks for Semantic Segmentation (ICCV'2019 Oral)

EMANet News The bug in loading the pretrained model is now fixed. I have updated the .pth. To use it, download it again. EMANet-101 gets 80.99 on the

Xia Li 李夏 663 Nov 30, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
Contrastive Feature Loss for Image Prediction

Contrastive Feature Loss for Image Prediction We provide a PyTorch implementation of our contrastive feature loss presented in: Contrastive Feature Lo

Alex Andonian 44 Oct 05, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

Utkarsh Ojha 251 Dec 11, 2022
Implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

SemCo The official pytorch implementation of the paper All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training

42 Nov 14, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
A PyTorch Implementation of the Luna: Linear Unified Nested Attention

Unofficial PyTorch implementation of Luna: Linear Unified Nested Attention The quadratic computational and memory complexities of the Transformer’s at

Soohwan Kim 32 Nov 07, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Code & Data for Enhancing Photorealism Enhancement

Code & Data for Enhancing Photorealism Enhancement

Intel ISL (Intel Intelligent Systems Lab) 1.1k Jan 08, 2023
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022