Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

Related tags

Deep LearningEMOShip
Overview

EMOShip

This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices".

If you use this dataset in your work, please cite our paper:

@article{chang2021memx,
  title={MemX: An Attention-Aware Smart Eyewear System for Personalized Moment Auto-capture},
  author={Chang, Yuhu and Zhao, Yingying and Dong, Mingzhi and Wang, Yujiang and Lu, Yutian and Lv, Qin and Dick, Robert P and Lu, Tun and Gu, Ning and Shang, Li},
  journal = {Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.},
  year={2021},
  doi = {10.1145/3463509}
}

TBD

Dataset

The data of EMO-Film dataset is collected in a controlled laboratory environment. The video clips were selected from the FilmStim dataset, as FilmStim is one of the widely-used emotion-eliciting video dataset. We divided all videos of FilmStim dataset (64 video clips in total) into 7 categories based on the provided sentiment labels, each category corresponding to one emotional class (the neutral plus six basic emotion). The detailed description was given in Section 4.1 in the paper.

Due to the privacy concerns raised by some volunteers, we cannot release the full dataset with all 25 the subjects included. However, following the outcomes of the privacy survey, we are able to make public a filtered version of our dataset, which consists of 16 subjects giving their permissions to release the data. The videos from the rest 9 participants are therefore omitted to protect their privacy.

The dataset can be downloaded here (TBD).

Data Format

EMO-Film has two parts and a csv file:

eye.tar.gz: This compressed package contains eye images captured when each participant watched different video segments. It contains 16 folders, each corresponding to participants. There are two subfolders under each user folder, corresponding to the two video clips watched by the participant. Each subfolder contains eye images stored in JPG format.

filmstim.tar.gz: This compressed package contains the 64 video clips mentioned above. There are 64 folders corresponding to 64 video clips, and each folder contains the frames in JPG format of video clips.

label.csv: This CSV file contains the corresponding relationship between the eye part and the filmstim part, as well as the gaze position of the eyes and the user's emotion annotation.

It contains the following attributes:

user: The participant number.

eye_frame_path: The relative path of eye image frame. The frame has cropped to preserve only the eye area.

world_frame_path: The relative path of filmstim image frame. Please note that participants actually watched video clips from the display with glasses. After post-processing, the area outside the monitor has been excluded. Here is the content displayed on the monitor, that is, the frame of FilmStim dataset.

gaze_x and gaze_y: The gaze position in the space of the scene frame. The are floating point numbers and origin 0,0 at the bottom left and 1,1 at the top right. Please note that corresponding to the above, the areas outside the screen have been excluded.

PD_x and PD_y: The pupil diameter in pixels in two axial directions.

confidence: The confidence of pupil position. A value of 0 indicates no confidence and 1 indicates perfect confidence.

label: The emotion categories marked by the user, 0-6 respectively indicate angry, disgust, fear, happy, sad, surprise, and neutral.

A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Differentiable molecular simulation of proteins with a coarse-grained potential

Differentiable molecular simulation of proteins with a coarse-grained potential This repository contains the learned potential, simulation scripts and

UCL Bioinformatics Group 44 Dec 10, 2022
Noise Conditional Score Networks (NeurIPS 2019, Oral)

Generative Modeling by Estimating Gradients of the Data Distribution This repo contains the official implementation for the NeurIPS 2019 paper Generat

451 Dec 26, 2022
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

(Lester) Sizhe Li 29 Nov 29, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022