Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

Related tags

Deep Learningnex-code
Overview

NeX: Real-time View Synthesis with Neural Basis Expansion

Project Page | Video | Paper | COLAB | Shiny Dataset

Open NeX in Colab

NeX

We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce NeXt-level view-dependent effects---in real time. Unlike traditional MPI that uses a set of simple RGBα planes, our technique models view-dependent effects by instead parameterizing each pixel as a linear combination of basis functions learned from a neural network. Moreover, we propose a hybrid implicit-explicit modeling strategy that improves upon fine detail and produces state-of-the-art results. Our method is evaluated on benchmark forward-facing datasets as well as our newly-introduced dataset designed to test the limit of view-dependent modeling with significantly more challenging effects such as the rainbow reflections on a CD. Our method achieves the best overall scores across all major metrics on these datasets with more than 1000× faster rendering time than the state of the art.

Table of contents



Getting started

conda env create -f environment.yml
./download_demo_data.sh
conda activate nex
python train.py -scene data/crest_demo -model_dir crest -http
tensorboard --logdir runs/

Installation

We provide environment.yml to help you setup a conda environment.

conda env create -f environment.yml

Dataset

Shiny dataset

Download: Shiny dataset.

We provide 2 directories named shiny and shiny_extended.

  • shiny contains benchmark scenes used to report the scores in our paper.
  • shiny_extended contains additional challenging scenes used on our website project page and video

NeRF's real forward-facing dataset

Download: Undistorted front facing dataset

For real forward-facing dataset, NeRF is trained with the raw images, which may contain lens distortion. But we use the undistorted images provided by COLMAP.

However, you can try running other scenes from Local lightfield fusion (Eg. airplant) without any changes in the dataset files. In this case, the images are not automatically undistorted.

Deepview's spaces dataset

Download: Modified spaces dataset

We slightly modified the file structure of Spaces dataset in order to determine the plane placement and split train/test sets.

Using your own images.

Running NeX on your own images. You need to install COLMAP on your machine.

Then, put your images into a directory following this structure

<scene_name>
|-- images
     | -- image_name1.jpg
     | -- image_name2.jpg
     ...

The training code will automatically prepare a scene for you. You may have to tune planes.txt to get better reconstruction (see dataset explaination)

Training

Run with the paper's config

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http

This implementation uses scikit-image to resize images during training by default. The results and scores in the paper are generated using OpenCV's resize function. If you want the same behavior, please add -cv2resize argument.

Note that this code is tested on an Nvidia V100 32GB and 4x RTX 2080Ti GPU.

For a GPU/GPUs with less memory (e.g., a single RTX 2080Ti), you can run using the following command:

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http -layers 12 -sublayers 6 -hidden 256

Note that when your GPU runs ouut of memeory, you can try reducing the number of layers, sublayers, and sampled rays.

Rendering

To generate a WebGL viewer and a video result.

python train.py -scene ${scene} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -predict -http

Video rendering

To generate a video that matches the real forward-facing rendering path, add -nice_llff argument, or -nice_shiny for shiny dataset

Citation

@inproceedings{Wizadwongsa2021NeX,
    author = {Wizadwongsa, Suttisak and Phongthawee, Pakkapon and Yenphraphai, Jiraphon and Suwajanakorn, Supasorn},
    title = {NeX: Real-time View Synthesis with Neural Basis Expansion},
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year = {2021},
}

Visit us 🦉

Vision & Learning Laboratory VISTEC - Vidyasirimedhi Institute of Science and Technology

Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Converts given image (png, jpg, etc) to amogus gif.

Image to Amogus Converter Converts given image (.png, .jpg, etc) to an amogus gif! Usage Place image in the /target/ folder (or anywhere realistically

Hank Magan 1 Nov 24, 2021
Streaming over lightweight data transformations

Description Data augmentation libarary for Deep Learning, which supports images, segmentation masks, labels and keypoints. Furthermore, SOLT is fast a

Research Unit of Medical Imaging, Physics and Technology 256 Jan 08, 2023
A micro-game "flappy bird".

1-o-flappy A micro-game "flappy bird". Gameplays The game will be installed at /usr/bin . The name of it is "1-o-flappy". You can type "1-o-flappy" to

1 Nov 06, 2021
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
CTF challenges from redpwnCTF 2021

redpwnCTF 2021 Challenges This repository contains challenges from redpwnCTF 2021 in the rCDS format; challenge information is in the challenge.yaml f

redpwn 27 Dec 07, 2022
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Jiaxi Jiang 282 Jan 02, 2023
Seach Losses of our paper 'Loss Function Discovery for Object Detection via Convergence-Simulation Driven Search', accepted by ICLR 2021.

CSE-Autoloss Designing proper loss functions for vision tasks has been a long-standing research direction to advance the capability of existing models

Peidong Liu(刘沛东) 54 Dec 17, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Alignment Attention Fusion framework for Few-Shot Object Detection

AAF framework Framework generalities This repository contains the code of the AAF framework proposed in this paper. The main idea behind this work is

Pierre Le Jeune 20 Dec 16, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Official implementation of the paper DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows

DeFlow: Learning Complex Image Degradations from Unpaired Data with Conditional Flows Official implementation of the paper DeFlow: Learning Complex Im

Valentin Wolf 86 Nov 16, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022