๐Ÿ”ฅ Real-time Super Resolution enhancement (4x) with content loss and relativistic adversarial optimization ๐Ÿ”ฅ

Overview

Super Resolution for Real Time Image Enhancement

Final Results from Validation data

Introduction

It is no suprising that adversarial training is indeed possible for super resolution tasks. The problem with pretty much all the state of the art models is that they are just not usable for native deployment, because of 100s of MBs of model size.

Also, most of the known super resolution frameworks only works on single compression method, such as bicubic, nearest, bilinear etc. Which helps the model a lot to beat the previous state of the art scores but they perform poorly on real life low resolution images because they might not belong to the same compression method for which the model was trained for.

So for me the main goal with this project wasn't just to create yet another super resolution model, but to develop a lightest model as possible which works well on any random compression methods.

With this goal in mind, I tried adopting the modern super resolution frameworks such as relativistic adversarial training, and content loss optimization (I've mainly followed the ESRGAN, with few changes in the objective function), and finally was able to create a model of size 5MB!!!

API Usage

from inference import enhance_image

enhance_image(
    lr_image, # 
   
    , # or lr_path = 
    
     ,
    
   
    sr_path, # ,
    visualize, # 
   
    size, # 
   
    ,
   
    )

CLI Usage

usage: inference.py [-h] [--lr-path LR_PATH] [--sr-path SR_PATH]

Super Resolution for Real Time Image Enhancement

optional arguments:
  -h, --help         show this help message and exit
  --lr-path LR_PATH  Path to the low resolution image.
  --sr-path SR_PATH  Output path where the enhanced image would be saved.

Model architectures

The main building block of the generator is the Residual in Residual Dense Block (RRDB), which consists of classic DenseNet module but coupled with a residual connection

Now in the original paper the authors mentioned to remove the batch normalization layer in order to remove the checkboard artifacts, but due to the extreme small size of my model, I found utilizing the batch normalization layer quite effective for both speeding up the training and better quality results.

Another change I made in the original architecture is replacing the nearest upsampling proceedure with the pixel shuffle, which helped a lot to produce highly detailed outputs given the size of the model.

The discriminator is made up of blocks of classifc convolution layer followed by batch normalization followed by leaky relu non linearity.

Relativistic Discriminator

A relativistic discriminator tries to predict the probability that a real image is relatively more realistic than a fake one.

So the discriminator and the generator are optimized to minizize these corresponding losses:

Discriminator's adversarial loss:

Generator's adversarial loss:

Perceptual Loss (Final objective for the Generator)

Original perceptual loss introduced in SRGAN paper combines the adversarial loss and the content loss obtained from the features of final convolution layers of the VGG Net.

Effectiveness of perceptual loss if found increased by constraining on features before activation rather than after activation as practiced in SRGAN.

To make the Perceptual loss more effective, I additionally added the preactivation features disparity from both shallow and deep layers, making the generator produce better results.

In addition to content loss and relativistic adversarial optimization, a simple pixel loss is also added to the generator's final objective as per the paper.

Now based on my experiments I found it really hard for the generator to produce highly detailed outputs when its also minimizing the pixel loss (I'm imputing this observation to the fact that my model is very small).

This is a bit surprising because optimizing an additional objective function which has same optima should help speeding up the training. My interpretation is since super resolution is not a one to one matching, as multiple results are there for a single low resolution patch (more on patch size below), so forcing the generator to converge to a single output would cause the generator to not produce detailed but instead the average of all those possible outputs.

So I tried reducing the pixel loss weight coefficient down to 1e-2 to 1e-4 as described in the paper, and then compared the results with the generator trained without any pixel loss, and found that pixel loss has no significant visual improvements. So given my constrained training environment (Google Colab), I decided not to utilize the pixel loss as one of the part of generator's loss.

So here's the generator's final loss:

Patch size affect

Ideally larger the patch size better the adversarial training hence better the results, since an enlarged receptive field helps both the models to capture more semantic information. Therefore the paper uses 96x96 to 192x192 as the patch size resolution, but since I was constrained to utilize Google Colab, my patch size was only 32x32 ๐Ÿ˜ถ , and that too with batch size of 8.

Multiple compression methods

The idea is to make the generator independent of the compression that is applied to the training dataset, so that its much more robust in real life samples.

For this I randomly applied the nearest, bilinear and bicubic compressions on all the data points in the dataset every time a batch is processed.

Validation Results after ~500 epochs

Loss type

Value
Content Loss (L1) [5th, 10th, 20th preactivation features from VGGNet] ~38.582
Style Loss (L1) [320th preactivation features from EfficientNetB4] ~1.1752
Adversarial Loss ~1.550

Visual Comparisons

Below are some of the common outputs that most of the super resolution papers compare with (not used in the training data).

Author - Rishik Mourya

Owner
Rishik Mourya
3rd year Undergrad | ML Engineer @Nevronas.ai | ML Engineer @Skylarklabs.ai | And part-time Web Developer.
Rishik Mourya
YOLO-v5 ๊ธฐ๋ฐ˜ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adaptive Cruise Control ๊ธฐ๋Šฅ ๊ตฌํ˜„

์ž์œจ ์ฃผํ–‰์ฐจ์˜ ์˜์ƒ ๊ธฐ๋ฐ˜ ์ฐจ๊ฐ„๊ฑฐ๋ฆฌ ์œ ์ง€ ๊ฐœ๋ฐœ Table of Contents ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ ์ฃผ์š” ๊ธฐ๋Šฅ ์‹œ์Šคํ…œ ๊ตฌ์กฐ ๋””๋ ‰ํ† ๋ฆฌ ๊ตฌ์กฐ ๊ฒฐ๊ณผ ์‹คํ–‰ ๋ฐฉ๋ฒ• ์ฐธ์กฐ ํŒ€์› ํ”„๋กœ์ ํŠธ ์†Œ๊ฐœ YOLO-v5 ๊ธฐ๋ฐ˜์œผ๋กœ ๋‹จ์•ˆ ์นด๋ฉ”๋ผ์˜ ์˜์ƒ์„ ํ™œ์šฉํ•ด ์ฐจ๊ฐ„ ๊ฑฐ๋ฆฌ๋ฅผ ์ผ์ •ํ•˜๊ฒŒ ์œ ์ง€ํ•˜๋ฉฐ ์ฃผํ–‰ํ•˜๋Š” Adap

14 Jun 29, 2022
The official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness.

This repository is the official implementation of A Unified Game-Theoretic Interpretation of Adversarial Robustness. Requirements pip install -r requi

Jie Ren 17 Dec 12, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Identify the emotion of multiple speakers in an Audio Segment

MevonAI - Speech Emotion Recognition Identify the emotion of multiple speakers in a Audio Segment Report Bug ยท Request Feature Try the Demo Here Table

Suyash More 110 Dec 03, 2022
PyTorch implementations of algorithms for density estimation

pytorch-flows A PyTorch implementations of Masked Autoregressive Flow and some other invertible transformations from Glow: Generative Flow with Invert

Ilya Kostrikov 546 Dec 05, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

407 Dec 15, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
A Python library for generating new text from existing samples.

ReMarkov is a Python library for generating text from existing samples using Markov chains. You can use it to customize all sorts of writing from birt

8 May 17, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
Code for CVPR2019 Towards Natural and Accurate Future Motion Prediction of Humans and Animals

Motion prediction with Hierarchical Motion Recurrent Network Introduction This work concerns motion prediction of articulate objects such as human, fi

Shuang Wu 85 Dec 11, 2022
โšพ๐Ÿค–โšพ Automatic baseball pitching overlay in realtime

โšพ Automatically overlaying pitch motion and trajectory with machine learning! This project takes your baseball pitching clips and automatically genera

Tony Chou 240 Dec 05, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anฤฑl Gรผven 4 Mar 07, 2022
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

๐ŸŽต MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022