Framework for fine-tuning pretrained transformers for Named-Entity Recognition (NER) tasks

Related tags

Text Data & NLPNERDA
Overview

NERDA

Build status codecov PyPI PyPI - Downloads License

Not only is NERDA a mesmerizing muppet-like character. NERDA is also a python package, that offers a slick easy-to-use interface for fine-tuning pretrained transformers for Named Entity Recognition (=NER) tasks.

You can also utilize NERDA to access a selection of precooked NERDA models, that you can use right off the shelf for NER tasks.

NERDA is built on huggingface transformers and the popular pytorch framework.

Installation guide

NERDA can be installed from PyPI with

pip install NERDA

If you want the development version then install directly from GitHub.

Named-Entity Recogntion tasks

Named-entity recognition (NER) (also known as (named) entity identification, entity chunking, and entity extraction) is a subtask of information extraction that seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, medical codes, time expressions, quantities, monetary values, percentages, etc.1

Example Task:

Task

Identify person names and organizations in text:

Jim bought 300 shares of Acme Corp.

Solution

Named Entity Type
'Jim' Person
'Acme Corp.' Organization

Read more about NER on Wikipedia.

Train Your Own NERDA Model

Say, we want to fine-tune a pretrained Multilingual BERT transformer for NER in English.

Load package.

from NERDA.models import NERDA

Instantiate a NERDA model (with default settings) for the CoNLL-2003 English NER data set.

from NERDA.datasets import get_conll_data
model = NERDA(dataset_training = get_conll_data('train'),
              dataset_validation = get_conll_data('valid'),
              transformer = 'bert-base-multilingual-uncased')

By default the network architecture is analogous to that of the models in Hvingelby et al. 2020.

The model can then be trained/fine-tuned by invoking the train method, e.g.

model.train()

Note: this will take some time depending on the dimensions of your machine (if you want to skip training, you can go ahead and use one of the models, that we have already precooked for you in stead).

After the model has been trained, the model can be used for predicting named entities in new texts.

# text to identify named entities in.
text = 'Old MacDonald had a farm'
model.predict_text(text)
([['Old', 'MacDonald', 'had', 'a', 'farm']], [['B-PER', 'I-PER', 'O', 'O', 'O']])

This means, that the model identified 'Old MacDonald' as a PERson.

Please note, that the NERDA model configuration above was instantiated with all default settings. You can however customize your NERDA model in a lot of ways:

  • Use your own data set (finetune a transformer for any given language)
  • Choose whatever transformer you like
  • Set all of the hyperparameters for the model
  • You can even apply your own Network Architecture

Read more about advanced usage of NERDA in the detailed documentation.

Use a Precooked NERDA model

We have precooked a number of NERDA models for Danish and English, that you can download and use right off the shelf.

Here is an example.

Instantiate a multilingual BERT model, that has been finetuned for NER in Danish, DA_BERT_ML.

from NERDA.precooked import DA_BERT_ML()
model = DA_BERT_ML()

Down(load) network from web:

model.download_network()
model.load_network()

You can now predict named entities in new (Danish) texts

# (Danish) text to identify named entities in:
# 'Jens Hansen har en bondegård' = 'Old MacDonald had a farm'
text = 'Jens Hansen har en bondegård'
model.predict_text(text)
([['Jens', 'Hansen', 'har', 'en', 'bondegård']], [['B-PER', 'I-PER', 'O', 'O', 'O']])

List of Precooked Models

The table below shows the precooked NERDA models publicly available for download.

Model Language Transformer Dataset F1-score
DA_BERT_ML Danish Multilingual BERT DaNE 82.8
DA_ELECTRA_DA Danish Danish ELECTRA DaNE 79.8
EN_BERT_ML English Multilingual BERT CoNLL-2003 90.4
EN_ELECTRA_EN English English ELECTRA CoNLL-2003 89.1

F1-score is the micro-averaged F1-score across entity tags and is evaluated on the respective test sets (that have not been used for training nor validation of the models).

Note, that we have not spent a lot of time on actually fine-tuning the models, so there could be room for improvement. If you are able to improve the models, we will be happy to hear from you and include your NERDA model.

Model Performance

The table below summarizes the performance (F1-scores) of the precooked NERDA models.

Level DA_BERT_ML DA_ELECTRA_DA EN_BERT_ML EN_ELECTRA_EN
B-PER 93.8 92.0 96.0 95.1
I-PER 97.8 97.1 98.5 97.9
B-ORG 69.5 66.9 88.4 86.2
I-ORG 69.9 70.7 85.7 83.1
B-LOC 82.5 79.0 92.3 91.1
I-LOC 31.6 44.4 83.9 80.5
B-MISC 73.4 68.6 81.8 80.1
I-MISC 86.1 63.6 63.4 68.4
AVG_MICRO 82.8 79.8 90.4 89.1
AVG_MACRO 75.6 72.8 86.3 85.3

'NERDA'?

'NERDA' originally stands for 'Named Entity Recognition for DAnish'. However, this is somewhat misleading, since the functionality is no longer limited to Danish. On the contrary it generalizes to all other languages, i.e. NERDA supports fine-tuning of transformers for NER tasks for any arbitrary language.

Background

NERDA is developed as a part of Ekstra Bladet’s activities on Platform Intelligence in News (PIN). PIN is an industrial research project that is carried out in collaboration between the Technical University of Denmark, University of Copenhagen and Copenhagen Business School with funding from Innovation Fund Denmark. The project runs from 2020-2023 and develops recommender systems and natural language processing systems geared for news publishing, some of which are open sourced like NERDA.

Shout-outs

Read more

The detailed documentation for NERDA including code references and extended workflow examples can be accessed here.

Contact

We hope, that you will find NERDA useful.

Please direct any questions and feedbacks to us!

If you want to contribute (which we encourage you to), open a PR.

If you encounter a bug or want to suggest an enhancement, please open an issue.

Owner
Ekstra Bladet
GitHub of Ekstra Bladet Analyse
Ekstra Bladet
Search Git commits in natural language

NaLCoS - NAtural Language COmmit Search Search commit messages in your repository in natural language. NaLCoS (NAtural Language COmmit Search) is a co

Pushkar Patel 50 Mar 22, 2022
Repositório da disciplina no semestre 2021-2

Avisos! Nenhum aviso! Compiladores 1 Este é o Git da disciplina Compiladores 1. Aqui ficará o material produzido em sala de aula assim como tarefas, w

6 May 13, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

[EMNLP 2021] Mirror-BERT: Converting Pretrained Language Models to universal text encoders without labels.

Cambridge Language Technology Lab 61 Dec 10, 2022
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Natural Language Processing Tasks and Examples.

Natural Language Processing Tasks and Examples With the advancement of A.I. technology in recent years, natural language processing technology has bee

Soohwan Kim 53 Dec 20, 2022
Fully featured implementation of Routing Transformer

Routing Transformer A fully featured implementation of Routing Transformer. The paper proposes using k-means to route similar queries / keys into the

Phil Wang 246 Jan 02, 2023
PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation

StyleSpeech - PyTorch Implementation PyTorch Implementation of Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation. Status (2021.06.09

Keon Lee 142 Jan 06, 2023
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
Backend for the Autocomplete platform. An AI assisted coding platform.

Introduction A custom predictor allows you to deploy your own prediction implementation, useful when the existing serving implementations don't fit yo

Tatenda Christopher Chinyamakobvu 1 Jan 31, 2022
Indonesia spellchecker with python

indonesia-spellchecker Ganti kata yang terdapat pada file teks.txt untuk diperiksa kebenaran kata. Run on local machine python3 main.py

Rahmat Agung Julians 1 Sep 14, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
Semantic search through a vectorized Wikipedia (SentenceBERT) with the Weaviate vector search engine

Semantic search through Wikipedia with the Weaviate vector search engine Weaviate is an open source vector search engine with build-in vectorization a

SeMI Technologies 191 Dec 26, 2022
Mastering Transformers, published by Packt

Mastering Transformers This is the code repository for Mastering Transformers, published by Packt. Build state-of-the-art models from scratch with adv

Packt 195 Jan 01, 2023
official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

official ( API ) for the zAmericanEnglish app in [ Google play ] and [ App store ]

Plugin 3 Jan 12, 2022